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Abstract

Most chess-playing programs are based on well known algorithms and determinisitc eval-
uation functions. Due to the complexity of this game, it seems however that using complex
systems such as neural networks or genetic algorithms may help improve (or at least compete
with) the performance of said programs.

This seminar aims to present several projects and papers making use of these “alterna-
tive” methods to design chess programs, details about their implementations and their actual
performance compared to “classic” chess algorithms or human players.
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1 Introduction

Chess is known to be a complex game. However the rules of this game are quite simple, the
complexity comes from the number of positions, and the number of moves a player can do (around
35 each turn).

When talking about computer chess players, one mostly thinks only about algorithms such
as minimax. These algorithms associate a score to possible moves in a totally deterministic way,
then choose the move which has the best score. Even if these are the most used algorithms, their
implementation has some annoying drawbacks.

Another approach to designing computer chess players would be to teach the computer to
become a good chess-player without hard coding its behavior. This might be possible by using
techniques such as neural network or genetic algorithms.

In the following, some classical, determinitic approaches to chess-player design will be quickly
explained, along with their drawbacks. Then focus will be given to several projects not using
these techniques in favor of methods which try to have the computer learn by itself to become
a better chess-player. The implementation of these will be described and their performance at
playing chess detailed.

2 The minimax algorithm

Minimax (sometimes called min-max) is a common algorithm [1] which can be used for almost
every two player board games. One important fact is that games usable with minimax are those
where no information about the other player’s possible moves is concealed (no secret piece or card,
both player have the exact same knowledge about the game). It (or its variants) is the most
commonly used in chess programs.

Minimax relies on a search tree of the attainable board configuration from the current situation
(i.e. a tree of the possible moves, see fig. 1). It then searches through this tree for the best move
to play.

Figure 1: A one-degree depth minimax tree for a (very) simplified chess position.

The algorithm is based on the assumption that the opposing party always makes the best move
(i.e. the worst move for the current player). This behavior is known as perfect play. It explores
(depth-first), the possible next moves until the very end of the game.

2



A score is assigned to the leafs of the search tree depending on the outcome of the game (win,
loss, draw). This score is then propagated up into the tree. Every level of the tree represents the
possible moves for one of the players. As they have opposite objectives, their decision will not be
the same; the current player will try to make the move maximizing the score, whereas his opponent
will try to maximize his own evaluation of the game, thus minimizing the current player’s score.
Minimax is then an alternation of maximization and minimization of the score (see fig. 2).

Figure 2: The propagation of the scores using the minimax algorithm for a relatively short search
tree.

3 Classical approaches

3.1 Heuristic scoring

Due to the complexity of the chess game, it is not reasonnable to implement the minimax algorithm
as-is. The computer time needed to explore all the possibilities would be too long.

To solve this problem, the tree is not explored until the end of the game, but only to a depth
n. The position is then given a score according to evaluation functions considering the features of
the board configuration.

3.1.1 Board evaluation

The usual score function takes into account several parameters of the pieces positions in order to
compute the evaluation of the situation. This type of evaluation function is usually checking some
or all of the following features [2].

material balance every piece can be given a value according to its power (e.g. a pawn will
be given a smaller value than the queen), the relative power of both players can then be
determined by comparing the value of their pieces;
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number of possible moves the more possible moves a player can play, the less he is likely to
be stuck in an uneasy situation, thus their number can be counted positively in the scoring
function;

board control i.e. , the number of parts of the board where a player has more pieces than his
opponent which can, then, be considered safe; the more control a player has on the board,
the easier it will be for him to set up his pieces in order to attack;

development of the pieces is an important factor as the pieces are not useful if they do not
move, whereas they can be used to gain a better control of the board or threaten some of
the opponent’s pieces;

pawns formation as they are numerous, the pawns can either be very useful or disturb the
evolution of the game, then it is important to place them correctly, which makes their
positions an important criterium to take into account while evaluating a position;

king safety the final goal when playing chess is to manage to threaten the opposing king so that
it can’t escape, considering how well one’s king is protected and how easily one’s piece can
attack the opponent’s king are good insights about how good the current board configuration
is.

Defining functions evaluating these parameters is not straightforward, but the main problem is
usually attributing a weight to all of these attributes in order to determine the score of a position.
This is mostly donne by trial-and-error which may not be very efficient.

3.1.2 Drawbacks

Even if the minimax algorithm theoretically manages to win, as it tries to find the path to a winning
position, some drawbacks appear in its implementation using this kind of evaluation function.

First, it is obvious that the greater the explored depth n will be, the longer it will take for
the computer to determine what it should play. A trade-off has to be made between speed and
exploration of the outcomes of the possible moves.

Another, most important, problem of the actual implementation of the minimax is called the
horizon effect. As the algorithm only explores a depth of n turns, it cannot detect some possible
very good (or very bad) positions, which may drastically change the score it would attribute to a
given leaf, situated at level n + 1 or deeper.

3.1.3 Alpha/beta cutoff

An optimized version of the minimax algorithm is the alpha/beta algorithm [3]. It tries to minimize
the exploration in the tree by cutting branches that will not give better results than what has
been already explored (fig. 3 on the following page).

This algorithm usually decreases the computation time needed to choose between the possible
moves. However, it still suffers from the horizon effects which it does not handle better than the
minimax as the board evaluations do not usually take into account the possible next moves.

3.2 Plies databases

Current chess programs usually make use of databases in which interesting sequences of moves are
stored. This can be seen as a way to give memory to the chess-playing computers. Usually, only
openings (as on fig. 4 on the next page) and endgames (i.e. final periods of the game when only a
few pieces remain on the board) patterns are kept in these databases.

These databases cannot be used totally alone. They can however provide information to chess-
playing algorithms; they can give a good heuristic in order to score some positions which might
be encountered during a minimax search.
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Figure 3: The alpha/beta method can be used to cut branches of the minimax search tree which
will not give interesting scores.

Figure 4: The King’s Gambit is a well known opening where the player proposing the gambit is
exchanging one of his pawns with control of the center of the board.
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Figure 5: An example king-pawn endgame from [4].

However adding interesting strategic behavior to the games, the program using these databases
only know a fixed number of hard-coded plies. The strategy that the computer player may adopt
is then totally dependent on the human who actually filled these databases and cannot learn more
of these plies.

4 Complex system based methods

As opposed to what has been seen above, the methods which are presented in the following try to
make the computer algorithms evolve and learn by themselves or minimize the computation time
needed, for example to look in a database of games.

Most of the following can give alternative board evaluation functions diminishing the horizon
effect of the minimax and its derivatives. Some of them may even be used on their own (no search
algorithm).

4.1 Genetically evolving the weights of the evaluation function

As part of a machine learning course final project [4], Chris Wyman developped a program to
train computer chess players using genetic algorithms. This project has only focused on king-
pawn endgames (fig. 5) configurations in order to reduce the complexity of the problems, but the
method can easily be rescaled to the whole chess game.

4.1.1 Individuals

The individual is the set of weights that the evaluation function gives to several attributes of the
board configuration. This is a good alternative to the trial-and-error way of determining those.

As the black and white players do not pursue the same goal (the white player will try to win,
whereas the black one will try to draw the game), two set of weights have to be evolved for each
player, depending on which side it is playing.
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4.1.2 Fitness function

The evaluation of each individual is done by making them compete against each other. The
outcome (win, loss, draw) of these matches and their expectedness (an unexpected loss is worse
than an expected one) is used to compute the fitness value for a specific set of weights.

The formula for the fitness function, as given in the paper, is

WewNew + WuwNuw + WgedNged + WbedNbed + WgudNgud + WbudNbud + WelNel + WulNul

N
,

where the W (parameters of the GA) are the weights given to each outcome, and the N are the
number of games with the specific outcome (e → expected, u → unexpected, w → win, d → draw,
l → lose, g → good, b → bad). N is the total number of games.

It is interesting to note that the draw outcomes are classified into two categories: good and
bad. Once again, this is due to the fact that chess is not a symetric game where the whites have an
advantage. Drawing while playing whites will be considered a bad thing, whereas drawing when
playing blacks will be a good thing.

4.1.3 GA parameters and specificities

A somewhat standard GA has been used, using 4 bits variables for each weight in the chromosome
(some attempts at using 8 bits have been made to no avail), with mutation.

The generation evolution scheme is a little more complex than usual. The most common
method is to select two individuals according to their fitness and have them reproduce, the off-
springs replacing their parents in the next generation. In the scheme used here, only the individuals
with the highest fitnesses are allowed to reproduce with each other. The individuals with the lowest
fitnesses die and are replaced by the newly created offsprings. Finally, all the still-alive individuals
from the last generation are kept in the new one.

In order to avoid overfitting, a maximum of 21 initial board positions were used. For the
computation time to be kept reasonnable, it has also been necessary to randomly select players for
a game instead of having all the individuals competing with every other for every initial board.

An interesting bootstrapping method in order to reduce the computation time to have a popu-
lation of fairly good players for both side has been used. It consists of a single hard-coded black
player against which the whole population plays. This leads to a white player which can play
perfectly against this hard-coded black player. This white player is then used to train a black
player, and so on. Using this approach, and repeating the process three times, it has been possible
to train an always-drawing (against a human player) black player, and an interesting white player
(not always winning, but hard to defeat).

4.1.4 Performances of the trained players

The resulting trained players were good enough to challenge and sometimes defeat a human player.
It seems however, looking at the author’s conclusions, that this project suffers a scaling prob-

lem, as the players should be trained for every possible endgame situation (more pawns, another
remaining piece, . . . ) which might be very expensive in terms of computation time and memory
to store the players.

4.2 Neural-network-based position evaluation

NeuroChess [5] is an attempt to develop board evaluation functions using a neural network. The
neural network is trained using temporal differencing with an explanation-based learning. In
both cases, the process consists of presenting complete games and their outcome to the learning
algorithm, which will then update the weights of the neural networks appropriately. The board
configurations are presented to the neural network as a high-dimensional (175) vector.

First trained from databases of masters’ games as a bootstrap, NeuroChess is then able to
compete against itself in order to learn more generic, or unexpected, situations.
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4.2.1 Temporal differencing

The goal of this method is to train a neural network for it to be able to reproduce evaluations
of boards from already played games. In the end, it will hopefully be able to evaluate any given
board state and give accurate indications about what the next move should be.

The evaluation of the final board configuration is 0 if the game is drawn, 1 (resp. -1) if the
game is won (resp. lost) by the currently trained player. The scores of the previous states of the
game, leading to the final position, are then derived from this evaluation using the equation from
[5],

V target(st) = γ · V (st+2),

where V (st) is the evaluation of board state st, γ < 1 a discount factor and st+2 the board state
two plies later (i.e. after one move by the current player, and one by his opponent).

The discount factor is used to gradually decrease the evaluation of the boards as the learning
studies older board configurations. This has the desired effects of getting the evaluation of the
board close to 0, that is, a fair game, as the pieces get back to there initial situation, and to give
higher evaluations to configurations closest to a winning move, which favors quick games.

4.2.2 Explanation-based learning

Explanation-based learning (EBL) is used to reduce the training time of neural networks. Instead
of only training the networks with observations from the board, information about the actual rules
of chess are also given to the training algorithm in order to help it find the relevant features of
given board position.

The rules of chess are “explained” to the EBL algorithm using another neural network M . This
chess model is trained (using back-propagation) by being presented boards st and st+2 from a
database of chess games.

Using this approach, not only V (st) but also its slope ∂V (st)
∂st

can be determined by the neural
network. This information can then be used in order to determine which of the features of the
board should be change in order to increase quickly the score of the position.

Using this technique, it seems that algorithms such as the minimax may no longer be necessary.
In effect, the evaluation function can not only evaluate a bord configuration, but also give, through
this slope, the best direction in feature space (i.e. the best move) to play.

4.2.3 Performances

The program has been trained both using grand masters’ games database and by playing against
itself. It has then been compared to GNU Chess’s chess engine, which is using an alpha/beta
search, a “regular” board evaluation function and an opening book.

NeuroChess performs quite badly at playing against this deterministic engine, losing in more
that 70% of the games after having been trained over more than 2000 games. This figure, however,
has been ever-diminishing since the begining of the training. One might expect that, with a
sufficiently long training, NeuroChess may be able to outperform GNU Chess. It is also important
to note that, compared to a regular backprop-taught neural network, the EBL one manages to
win more games more rapidly.

4.3 Genetically programming a maximum search depth function

Using search functions such as minimax or its variants, one of the main issue is determining the
depth to wich the search should go down. This is usually worked around by hardcoding a maximum
search-depth in the algorithm. A really interesting solution to this problem would be to be able
to predict at which depth a potential winning move may happen. It would then be pointless to
lose more time searching deeper.

Genetic programming has been tested with some success [6] to a subset of chess, namely the
King-Rook-King endgame (fig. 6 on the next page). Two types of functions have been evolved,
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solving either the grand KRK problem (determining the depth at which a checkmate happens) or
the petite KRK problem (classifying games depending on whether or not they lead to a checkmate
in exactly the specified number of moves).

Figure 6: An example KRK endgame; black’s turn, white wins in 3 moves.

4.3.1 Terminals and functions

Genetic programming is a genetic algorithm manipulating trees. These trees represent the function
being evolved. The branches of the tree are some basic functions whereas the leafs are terminals,
actual values that are to be used in order to compute the function’s output.

In the KRK-endgame, there are mostly 6 parameters describing the game situation. These are
used as terminals:

• wkr, wkf , the white king’s rank (column) and file (line);

• wrr, wrf , the white rook’s rank and file;

• bkr, bkf , the black king’s rank and file.

However not mentionned in the paper, it seems necessary to have two constant terminals, such as
0 and 1 or 1 and 2. All the terminals are integers.

The functions used to construct the objective are very basic and not at all, expect for one,
related to chess:

• edge(i) which returns 1 or 2 depending on whether i is an edge of the board (i.e. i = 1, 8);

• distance(i, j) which returns the (positive) difference between i and j;

• ifthen(i, j, k) which returns j or k depending if i = 1 or not;

• compare(i, j) which returns 1 is i is lesser than j, and 2 otherwise.
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4.3.2 Fitness functions

The endgame configurations given to the algorithm come from a database of KRK endgames, in
which are also stored the numbers, lesser or equal to 16, of moves leading to a checkmate.

It is then possible to compare, in the case of the grand KRK, the output value of the evolved
functions with this number to determine if it performed correctly. The grand KRK fitness function
is then computed as

F = 1−
∑16

0
Ci−Ii

Ni

17
.

It compares, for each possible number of moves i, the number Ci of endgames correctly found to
finish in i moves with the number Ii of incorrect outputs. The perfectly fitted individual will get
a fitness of F = 0 whereas the worse one will get fitnesses F > 0.

For the petite KRK problem (actually there are 16 of these functions to evolve, one for each
class), which is a classifying problem, the fitness function is simpler to understand:

F = 1 + Tp − (Cp − Ip)−
Cn

Tn
.

Where the T ’s are the total number of positive (p) or negative (n) classifications, the C’s are the
correct classifications and the I’s are the erroneous ones. This fitness function will be 1 for a
perfectly classifying function, and greater than that for worse ones.

4.3.3 GA parameters

The jrgp genetic programming system has been used to evolve the individuals. Both problems were
evolved using a crossover probability of 75% and a mutation probability of 15%. The population
consited of 5000 individuals for the grand KRK, but only 1000 for the petite one, they were trained
for all the positions given in the KRK database.

4.3.4 Results

In the end, the GA produced a grand KRK function giving the right depth in only 41% of the cases
(after 32 generations). The petite KRK function (only one was actually completed) performed
much better, with 97% correct classification after 145 generations.

It may then seem interesting to use the petite KRK functions in a potential maximum-depth
searching function, but one has to keep in mind that there are sixteen of these to evaluate for only
one grand KRK function, which may be much more time consuming.

One should also be attentive to the fact that the individuals were trained over the whole
database, and the risk of having an overfitted function, not giving correct results for other
endgames, is high.

4.4 Next-move-deciding neural network

The distributed chess project [7] aims at “playing chess by pattern recognition”. The goal of
the project is to genetically evolve a neural network able to recognize board configurations and
determine the next interesting moves appropriately. However too few information about the actual
implementation are given, this project is interesting for several reasons.

The first interesting feature is that is does not make use of minimax-derived algorithms. Con-
trary to the preceding neural network, this one does not evaluate a given position, but rather
“decides” what the next move will be played.

Another characteristic which is worth noticing: the way the genetic algorithm is run. Instead
of running the algorithm on one single computer or little park of workstations, but on the whole
internet. It proposes people with idle computers or spare computing time to run the GA. Be-
sides speeding the execution of the genetic algorithms, this has the interesting effect of creating
subpopulations, which is usually a good thing to have in order to avoid early convergence.
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The neural networks are not trained on a complete game. They are proposed a number of
games which are supposed to focus on some specific features or periods of the game (endgame,
. . . ).

The final results on the training and test sets have shown that the neural networks evolved
using this method actually managed to perform better (depending on the training set). This tends
to show that it might be possible to dig further away in order to evolve better chess-playing neural
networks.

Using this kind of neural-network could also be useful in conjonction with more standard search
algorithms like alpha/beta. Valuable information such as the most interesting moves could be used
to reorder the explored node and cut earlier, thus increasing the search speed of such algorithms
by allowing them to cut branches earlier.

5 Conclusion

Some of the results obtained by complex systems-based approaches are interesting, in all cases,
the training or evolution produced better chess player than at the beginning. However, these chess
players were either not able to play a complete game because they only focused on some specific
period of the game or sub-function, or they were not good enough to fairly compete with other,
deterministic, chess playing programs.

In most cases, the limiting factor is the long training time needed to end up with a hopefully
good versatile player.

The approaches presented above, even if they do not seem good enough to be used on their
own in chess applications, maybe be integrated into already existing programs in order to improve
the heurisitics, evaluation functions,. . .

One can, anyway, hope to see these methods being more widely used, in addition to more
classic chess algorithm, in order to build really interesting chess players which may be able to
come up with some new, previously unthought of, tactics.
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