
Networking Needs and Solutions
for Road Vehicles at Imara

Olivier Mehani, Rodrigo Benenson, Séverin Lemaignan and Thierry Ernst
Inria Rocquencourt, Imara team
Domaine de Voluceau, BP 105

78153 Le Chesnay Cedex, France
Email: {firstname.lastname}@inria.fr

Abstract: Trying to provide safer and more efficient
transportation solutions, the need for reliable and ef-
ficient communications is increasing in ITS (Intelligent
Transportation Systems) use cases such as collaborative
road data collection, driver information systems, info-
tainment or fully driverless vehicles. Applications that
rely on vehicle-infrastructure (V2I) and vehicle-vehicle
(V2V) communications have different requirements and
would benefit from a widely deployed common standard
for the exchange of data. IP (Internet Protocol) is thus
advocated as the convergence layer between the various
available wireless technologies available on the market.
This paper surveys the methods employed in the Imara
team to provide a stable communication environment
allowing driverless vehicles to interact with each other in
several scenarios where information sharing is required. An
account of how the solutions are integrated and how well
they behave together in live experiments is given.
Areas of interest: In-Vehicle, Inter-Vehicle and Infras-
tructure to Vehicle Communications; ITS Architecture,
Interoperability and Standards; Mobile IP and Network
Mobility in IPv6.
Keywords: V2V, V2I, Mesh networks, MANET, OLSR,
Wireless networks, IPv6, Mobility, NEMO, Service discov-
ery, Zeroconf, Multicast, Semantic Networking, Ontology.

I. Introduction

The Imara team has been working on transport sys-
tems innovations for more than 10 years and is involved
in several european projects in this field (CyberCars 2,
COM2REACT, CVIS, etc.). Trying to provide safer and
more efficient transportation solutions, several axes are
explored, such as driver information systems, collaborative
road data collection or even fully driverless vehicles.

In this context, the need for reliable and efficient com-
munications between the vehicles (V2V) themselves or
with the infrastructure (V2I) is increasing. There exist sev-
eral wireless communication media, either proprietary of
off-the-shelf (Wi-Fi, GPRS/3G, DSRC, etc.), each having
their own specificities (coverage radius, delay, bandwidth).
As a result, various techniques are used to achieve commu-
nication between the involved entities and interoperability
becomes an issue. As discussed in [1], a communication

Figure 1. V2I: Two vehicles communicate with the infrastructure
to determine when they can pass a crossroads.

system based on IPv6 (Internet Protocol) is advocated
as the convergence layer between the various available
physical technologies. IP convergence is the direction taken
by some ITS cooperative systems project such as CVIS and
by the Imara team itself.

The aim of this paper is to survey methods employed
at Imara to provide a stable communication environment
allowing driverless vehicles to interact with each other in
several scenarios where information sharing is required.
Section II details three use cases on which the team is
working and Section III is presenting the common com-
munication architecture allowing all three use cases. In
section IV, we overview the ongoing implementations of
this communication architecture and the results of live
experiments. Our future works are outlined in section V
before concluding this paper.

II. ITS networks use cases

A. Crossroads manager

Crossroads passing is a problem which notably requires
communication in order to ensure safety and efficiency.
On a first approach, it seems reasonable to rely on the
infrastructure to ease the process [2]. In this scheme, ve-
hicles arriving at a crossroads first contact the crossroads-
regulating part of the infrastructure (Fig. 1), which they
have previously found to be in charge of the current



Figure 2. V2V: Two vehicles exchange their trajectory information.

segment of the road, and negociate when they can pass
the intersection safely.

This scenario unveils several needs for the communi-
cations layer. A reliable physical network layer is a pre-
requisite, in order to ensure an acceptably small packets
loss which would not burden the communication. This,
however, is not sufficient. The embedded computers also
need a way to find peers able to fullfill their requests (e.g.
find a supervisor able to provide the upcoming crossroads’
geometry). Only when the computers have identified each
other regarding the services they provide can they begin
running the actual algorithms and negociation to pass the
intersection.

B. Trajectories exchange
In order to avoid collisions, driverless vehicles need to

perceive they environment and make a prediction of it
(theoretically, up to infinity [3]). Since it is not possible
to have an accurate prediction of what the surrounding
obstacles (vehicles, pedestrians, dogs) are going to do, the
driverless vehicle needs to make a worst case assumption
of their possible movement. Given that the vehicle will try
to avoid a collision under any circumstance using a worst
case assumption forces the vehicle to keep large enough
distances from moving obstacles or to limit his maximum
speed. This behavior is desired, since it is the only way to
ensure a collision-free trajectory in an uncontrolled world.

This behavior, however, is suboptimal when two driver-
less vehicles are interacting. The future behavior of one
such vehicle can be known with a better precision than
that of a human driver. Thus, if driverless vehicles where
able to communicate their plans (Fig. 2), the worst case
scenario would become much more limited than when a
human driver is assumed. Having tighter bounds on the
future behavior of surrounding vehicles allows to reduce
safety distances, and augmente displacement speed.

In order to exchange their trajectories, the vehicles need
to communicate data such as arrays of position and speed
periodically. The required bandwith is of a few tens of
kilobits per seconds. These data need to reach all the
surrouding vehicles that could possibly interact with the
emitter (including opposite lanes) in the time horizon
covered by the exchanged data. Technically, geometric in-
formation with a road network, existing walls and the like
should be required to precisely define the set of “possibly

interacting”, but a simple geometric distance criterion can
be considered as a good enough approximation. The most
important requirement for this application is the latency,
which needs to be known and bounded in order to be
included in the safety margins computations. A latency of
a few tens of milliseconds is good enough for most urban
scenarios.

C. Semantic networking

An important issue emerges as soon as communication is
desired in an heterogenous environment: the unambiguous
representation of concepts to be shared amongst vehicles.
By heterogenous we mean automatic vehicles (cybercars)
possibly from different manufacturers, with different sets
of sensors and actuators, and thus different internal way of
representing the world. They only share the same commu-
nication system. What code (i.e. language) to use inside
which context must be determined. A common way to
describe (i.e. conceptualize) and represent (i.e. formalize)
a context is required in order to share it. Ontologies have
been designed for that purpose [4]. They are graphs which
link concepts in both the taxonomic axis (inheritance:
a cybercar IS-A car) and semantic axis (a cybercar IS-
POSITIONED at some coordinates).

Systematically defining relationships between concepts
provides a robust formal layer for reasoning. For instance,
in the context of two vehicles willing to exchange informa-
tions on their respective environments, Vehicle A can sense
the surroundings through a laser device while the vehicle B
is relying on stereovision. Different sets of data are gener-
ated. A laser generates an array of tuples (angle,distance).
Stereovision may generate various outputs like disparity
maps, depth maps, etc. If the vehicles’ respective en-
vironments are overlapping (e.g. at a crossroads), it is
desirable to match their perceptions (i.e. do collaborative
perception). Environment model matching, however, is
not trivial, especially when relying on different sources
and representation models. Ontologies allow to abstract
the sets of data by enforcing the projection of individual
representations on a common semantic system. They also
offer a robust first-order logic reasonning framework which
opens opportunities for possible cognitive approaches of
decision making.

From a networking point of view, the use of ontologies
mainly relies on the availability of a storage and query
engine at the vehicle level, as well as means of transferring
data between ontologies and their clients.

III. Communication architecture

A. Network hardware

The network hardware in the vehicles has been designed
to be transparent. It is based on a small embedded router
(a 4G Cube), with one ethernet interface for the intra-
vehicular network, one Wi-Fi interface to connect to the
VANET (Vehicular Ad-Hoc Network), and an optional



wlan0: 10.0.CB.ID/16
(VANET)

eth0: 10.CB.ID.1/24

local cube network: 10.CB.ID.0/24

CubeID CBID

ath0: 172.CB.ID.1/24 (optional)

Figure 3. A classical 4G Cube has several interfaces which IP
adresses and network ranges are determined from the router’s ID
for easy identification. The identifiers of the cubes are not below
1600 and have not yet reached 3199, thus giving the optional Wi-
Fi network correct IP addresses in the 172.16.0.0/20 private range.

other Wi-Fi interface which usage can be adapted ac-
cording to the needs (wireless intra-vehicular network,
other VANET access, etc.). The router is based on a
MIPS CPU and runs the Nylon Linux distribution. This
operating system allows access to a wide range of network
applications which only need be cross-compiled to work.

The network addressing is currently in IPv4 for historic
reasons. It has been done in such a way that the topology
is as simple as possible. Every subnetwork is clearly seper-
ated from the others by using different IP address ranges.
One of the main interest of this repartition is the complete
absence of NAT. Every cube has an identifier, which is a
4-digit serial number. The IP addresses pools are derived
from this identifier in order to simplify the determination
of which router routes which part of the network (Fig. 3).

A cube holds all its host networks’ parameters, and
runs a DHCP server on each managed interface (ethernet
and host Wi-Fi). A nameserver is listening on the hosted
networks for request to be forwarded to a real DNS, if
reachable. This setup allows to auto-configure the host
clients and eases maintenance (a faulty cube can be quickly
replaced by another one, as they share the same configu-
ration).

B. Higher level specifications

From a vehicle-centric point of view, the network archi-
tecture can be summarized as in Fig. 4.

Optimized Link State Routing (OLSR): As a VANET
is a higly dynamic network, it needs a network which
allows for easy reconfigurations of the topology. In this
respect, the OLSR protocol [5] is used to build a mesh
network between the in-car routers, without the need for
infrastructure. This protocol has the additional advantage
of being able to advertise host networks, thus allowing for
automatic update of the routing tables to include the in-
car networks.

When the mesh topology is fully established, OLSR also
accounts for nodes which are not directly reachable on the

Internet
3G 

Modem,

Ethernet,
Wi-fi

Wi-max...

DNS
Gateway

PDA,...

Lo
ca

l l
in

k

4G
Cube

Cycab Control
Computer

3D Visualization
Computer

W
i-f

i li
nk

Wi-fi link
Wi-fi link

W
i-fi link

W
i-f

i li
nk

W
i-fi link

• Dynamic routing
• No NAT
• Re-publication of 

Zeroconf services
• Multicast router

Zeroconf services
publication

Mesh Network
(OLSR)

Cycab 1

Cycab 2

Cycab n

Figure 4. Connected through a mesh network based on OLSR, the
in-car routers provide services like DNS-based services discovery or
multicast routing. Thanks to the cubes, access to the VANET and
other vehicles is almost totally transparent to higher level applica-
tions.

Wi-Fi link, due to the distance between two hosts. In this
situation, a multihop path is added to the routing tables,
transmitting the packets via one or more routers in the
network until it reaches the recipient. This is interesting
as it allows to build larger (in physical size) networks, and
keep connections between vehicles for a longer period of
time.

Additionally, a single masquerading router running
OLSR and announcing the default route (0.0.0.0/0) as a
host network is sufficient to provide internet access. This
can be installed either as part of a minimalistic infratruc-
ture, or in some of the vehicles equipped, for example,
with a GPRS/UMTS gateway. The other vehicles in the
VANET can then get opportunistic access to internet
without additional configuration.

Multicast DNS replication: In this automatically
built network architecture using hand-maintained name-
to-address mapping files would not be efficient. It is
necessary to have a more automatic naming service. The
works on Zero Configuration Networking (a.k.a. Zeroconf)
have led to the development of Multicast DNS (or mDNS
for short) [6]. This protocol is very similar to regular
centralised DNS, except that every host runs its own DNS
server and listens for queries it can answer on a multicast
channel. The default domain in which resolve is made is
.local.

One limitation of this protocol is that it is intended for
small, routerless, networks and uses a link-local, i.e. non-



routable, multicast address. Fortunately, an opensource
implementation of Zeroconf for Unix, Avahi1, provides a
Multicast DNS reflection facility. This system listens for
mDNS requests or announces on its links, and forwards
them on all the others. Running this daemon on a cube is
sufficient for all its connected networks to have the same
naming information. This way, names present on a local
link are propagated to the OLSR mesh network and, in
turn, replicated on the other routers’ internal networks,
thus creating a coherent naming space in which no IP
address has to be fixed or remembered.

DNS-Service Discovery: Another work on Zeroconf
has been focused on service discovery [7]. Based on a
working DNS service, this protocol searches for specific
records of service names in the _tcp and _udp subdomains
(e.g. _xmpp._tcp or _ntp._udp).

Coupled with the mDNS system described above, this
allows every computer in the VANET (either directly or
through a router), to publish and dynamically update a
list of services it can provide to the rest of the network.

Multicast routing: The classical method, when several
clients need the same information, is to send it to them as
a unicast stream, that is, replicate the whole transfer for
every peer. This has two main drawbacks. First, the peers
have to be known before being able to receive data. Then,
replicating the whole data stream can have a big impact
on the network availability, consuming more bandwidth
for the same information.

To solve this problem, IP-level multicast is used. This
allows several computers to listen to the same address
(in the multicast address space 224.0.0.0/20). In such a
situation, instead of duplicating the stream, a computer
only has to send it once to the target multicast group
and all the clients in need for this information will receive
it. Multicast communication can be seen as a routable
generalization of IPv4 broadcasting and, in most of the
cases, seamlessly substitute to it.

Due to this one-to-many (or even many-to-many)
scheme, it is not, at the time, really possible to maintain a
connection-based communication, thus the UDP protocol
is the default choice for multicasting. On the one hand,
this allows vehicles arriving close to a multicasting peer
to receive relevant traffic with (almost) no delay due to
the connection handshake. On the other hand, this implies
that no negociation on the format of transmitted data
can take place. The vehicles should know in advance and
be able to process the data format they will receive in a
given multicast stream. This can be worked around, for
example, by setting up a system where a new vehicle can
get information about several streams giving the same
information in differents formats and choose which one
to listen to. The use of DNS-SD or ontologies for (resp.)
passive or active discovery can provide an elegant solution
to this problem.

1http://www.avahi.org/

Figure 5. A small subset of the cybercar ontology. Ideas like
“A vehicle features several devices, be they sensors or actuator” or
“A cybercar, which is a vehicle, can request interaction with other
vehicles” are logically formalized.

Using IGMP (Internet Group Management Protocol),
clients can register to (or unregister from) multicast
groups, informing their local router about this. When
no client is subscribed to a group, the router can avoid
forwarding traffic for this group, saving local bandwidth.
On a wider network, the routers have to synchronize to
properly set their multicast routing tables and send each
other the multicast traffic their connected networks need.
PIM-SM (Protocol Independent Multicast - Sparse Mode)
[8] is a protocol which achieves this synchronisation task.
The vehicular routers run a PIM daemon (pimd)2 which
listens to IGMP traffic on their interfaces, sets the routing
tables appropriately and request traffic from other PIMd
routers if needed.

Ontologies: A semantic layer of communication has
been implemented through the use of a common ontology,
written in Web Ontology Language (OWL) [9], an XML
RDF specialization. This cybercar ontology stores a set of
concepts attached to cybercars, ranging from datatypes to
classes of possibly provided services. Fig. 5 illustrates on
a small subset of the ontology some relationships around
the concept of Vehicle.

It has been chosen to share an abstract version of the
cybercar ontology (i.e. without instances) amongst vehicle,
and let each of them instantiate (thus, specialize) it.

An ontology server has been introduced on each vehicle
to ease the use of ontologies for clients. This server is
written in Java and relies on the Jena library [10] to
interact with OWL ontologies. The server is intended to be
embedded in the vehicles, in parallel to the main vehicle
control software. Interaction with it is done via by XML-
RPC (through the Jetty Java webserver and the Redstone
XML-RPC library).

When started, the ontology server registers a DNS-
SD service (_ontoserver._tcp), and clients may then
query the server through standard XML-RPC requests.
The interface exposes four main operations: query, add,
updateObject, remove, and a fifth one, for debug pur-
poses, owlDump, which dumps the current in-memory on-

2http://netweb.usc.edu/pim/



SELECT ?position
WHERE {
VehicleA cc:isGlobalPositionned ?position .
}

Figure 6. A simple SPARQL request to get vehicle’s position from
the ontology. VehicleA contains the URI of the vehicle and the cc:
prefix stands for the cybercar ontology namespace.

Figure 7. A 4G cube has two MiniPCI slots and two antenna sockets
which are used to install two Wi-Fi cards. One is a 802.11b used
for the VANET (to achieve longer communication ranges), while the
other optional one can run in G mode to provide in-car wireless
connections.

tology to an OWL file. The most used one is the query
request: it wraps a SPARQL request [11] which is handled
by the Jena library to perform high-level queries on the on-
tology. For instance, a query to get the current position of
Vehicle A is shown on Fig. 6. The vehicle control software
is in charge of instantiating the ontology, then updates it
periodically by sending add and updateObject requests
containing statements (i.e. a (subject,predicate, object)
triplet).

As a demonstrator, the ontology-based architecture is
used to visualize, on an external 3D engine, the live posi-
tions of the vehicles. The 3D visualizer can dynamically
discover vehicles as soon as an ontology server starts
(thanks to Zeroconf), and then draws the vehicles at
their current locations. The 3D visualizer in under heavy
development and will soon be able to take full advantage of
the ontology by sending abstract requests to cybercars like
“What sensors do you hold?” or “What obstacles do you
see in front of you?”. The results will be then integrated
to the 3D environment.

IV. Implementation details and experiments

A. Hardware settings

The cube sports both 802.11b and 802.11g Wi-Fi cards
(Fig. 7). The 11Mbps card is used to connect to the
VANET. The other card, not present in all the cubes,
can be used for versatile purposes, but is mostly used
to provide wireless connection to other appliances in the
vehicle like PDAs or laptop computers.

 0

 50

 100

 150

 200

 250

 300

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

T
ra

ffi
c 

(B
ps

)

Protocol bandwith usage

1 2 3 4 5 6 7 8 9 10

OLSR occupation Multicast DNS

Figure 8. Bandwidth occupation on the mesh network by OLSR
and mDNS control packets. OLSR nodes generate roughly 60 Bps
per node of constant traffic, whereas mDNS is almost neglectable,
generating peaks of less than 30 Bps when a new client is started.

B. Network and bandwitdh considerations

Bandwidth usage: Several of the protocols imple-
mented in our VANET rely on periodic reemission of
control packets, the first in line being OLSR itself, which
has to keep track of peers and host networks. Another
traffic-generating protocol (both periodic and bursts), is
Multicast DNS and its reflections. As the bandwidth is
limited on the mesh network, it is important to keep track
of its usage by ever-running protocols for it not to collapse
under its own weight. Series of tests have been run over
a day, while measuring the occupied bandwidth (Fig. 8).
The scenario has been as follows:

1) initially, two OLSR routers are present on the mesh
network, without host computers;

2) a Zeroconf-enabled laptop computer running OLSR
is added directly to the mesh network;

3) a new cube is connected to the network, with a host
Windows computer running Apple’s Bonjour mDNS
implementation;

4) the latter cube is removed;
5) the same cube is readded to the network without its

host computer;
6) one of the original cubes is removed;
7) another cube is removed;
8) the laptop computer is removed, and one of the cube

is added;
9) the laptop computer is re-added;

10) the laptop computer is finally removed.
Multicast routing: Regarding the multicast routing

tables propagation through PIM, tests have been run using
the most typical case of multicasting: video streaming. The
experimental setup features two cubes (single hop mesh
network) with one computer on each host ethernet link.
One of the hosted computers starts multicasting a video
(say, a video from a camera watching the upcoming road)
on a non-local multicast stream (say 225.0.0.1). The other
computer then requests to join the multicast group.



Once the request to join has been sent, a delay of 5
seconds has been constantly observed before the group was
available on the destination network. This may not be a
problem in most of the cases, but can become an issue
when early information is needed, as in the exposed use-
case of trajectories exchange. To avoid this problem a (dis-
cutable) workaround may be to statically register routes to
the router for this specific traffic to be always forwarded.
This, however, goes against the argument of bandwidth
saving, as this very traffic will always be routed, even on
networks without clients requiring it.

V. Next plans

IPv4 fixed addressing is functional in the context of our
small network of less than ten vehicles. However, porting
this framework to real situations may prove impossible
due to the limited number of addresses available in the
IPv4 local pool. Collisions can be expected to happen
between vehicles’ identifiers, thus rendering communica-
tion malfunctionning or impossible. Taking into account
the goal of giving internet access to the vehicles in the
network worsens the problem as computers with only local
IP addresses will try to send global traffic. This can be
worked around, “as usual” with NATs, but in this context
of mobile network nodes, it is inevitable that their NAT
router will change, irremediably breaking their connections
every less than one kilometer.

All these problems find an elegant solution in the use
of IPv6 (and its Network Mobility extension [12]). The
autoconfiguration and duplicate address detection (DAD)
algorithms of plain IPv6 will remove the address collision
issue while NEMO can provide for seamless internet com-
munication has well as inter-vehicle communication over
longer distances via internet routing. Moreover IPv6 is
supported by several OLSR and mDNS implementations,
making the migration of the current architecture quite
straightforward. A Mobile IPv6 testbed is currently being
developed at Imara to provide the necessary framework to
ease the migration.

Regarding the specific routing problem for multicast in
a mesh network, an enhanced version of OLSR, MOOLSR
[13], takes care of synchronizing the routes between the
mesh routers. This has not been implemented yet in
the presented architecture, but is part of ongoing works
towards a more functionnal multihop multicast mesh net-
work.

VI. Conclusions

This network setup is quite interesting for inter-
vehicular communications. Basing itself on off-the-shelf
hardware and protocols, used in regular networks, like
multicast and Zeroconf, or more ad-hoc solutions, like
OLSR mesh networks, it provides a functional working
base for higher level applications. Moreover, it also sets
the base for a fully autoconfigurable network, where the
adresses of the embedded components may be arbitrarily

or randomly determined, but always abstracted by way
of user-friendly or semantically-rich names. Within this
versatile framework, one can easily imagine different types
of communications cohabitating, like planification, infor-
mation exchanges between autonomous vehicles, smooth

forwarding of internet traffic or inter-vehicle “leisure-
oriented” network traffic (chat, games, etc.).

Other solutions are, however, yet to be implemented.
The network is functional as is, but other techniques
(IPv6/NEMO) could greatly increase its possibilities and
ease of use. Works will be led in this direction, with total
transparency between a regular network and an in-car one
as a goal.

References

[1] T. Ernst, “The information technology era of the vehicular
industry,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 2,
pp. 49–52, 2006.

[2] O. Mehani and A. de La Fortelle, “Trajectory planning in
a crossroads for a fleet of driverless vehicles,” in Computer
Aided Systems Theory - EUROCAST 2007, 11th International
Conference on Computer Aided Systems Theory, Las Palmas de
Gran Canaria, Spain, February 2007, A. Quesada-Arencibia,
J. C. Rodŕıguez, R. M.-D. jr., and P. Roberto Moreno-Dı́az,
Eds., May 2007, in press.

[3] L. Bouraoui, S. Petti, A. Laouiti, T. Fraichard, and M. Parent,
“Cybercar cooperation for safe intersections,” in Proc. of
the IEEE Int. Conf. on Intelligent Transportation Systems,
Toronto, ON (CA), September 2006. [Online]. Available:
http://hal.inria.fr/inria-00126664

[4] T. R. Gruber, “Towards principles for the design of
ontologies used for knowledge sharing,” in Formal Ontology
in Conceptual Analysis and Knowledge Representation.
Kluwer Academic Publishers, 1993. [Online]. Available:
http://citeseer.ist.psu.edu/gruber93toward.html

[5] T. Clausen and P. Jacquet, “Optimized Link State
Routing protocol (OLSR),” 2003. [Online]. Available:
http://citeseer.ist.psu.edu/clausen03optimized.html

[6] M. K. S. Cheshire, “Multicast DNS,” Inter-
net Draft, http://files.multicastdns.org/draft-cheshire-
dnsext-multicastdns-06.txt, February 2006. [Online].
Available: http://files.multicastdns.org/draft-cheshire-
dnsext-multicastdns-06.txt

[7] ——, “DNS-based Service Discovery,” Inter-
net Draft, http://files.dns-sd.org/draft-cheshire-
dnsext-dns-sd.txt, February 2006. [Online]. Avail-
able: http://files.dns-sd.org/draft-cheshire-dnsext-dns-
sd-04.txt

[8] D. Estrin, S. Deering, D. Farinacci, V. Ching-
gung, and L. Liming, “Protocol Independent Multicast
(PIM): Protocol specification,” 1994. [Online]. Available:
http://citeseer.ist.psu.edu/deering95protocol.html

[9] S. Bechhofer and al., “Web ontology language (OWL)
reference,” W3C, Tech. Rep., 2005. [Online]. Available:
http://www.w3c.org/TR/owl-ref/

[10] J. J. Carroll and al., “Jena: implementing the semantic web
recommendations,” in WWW Alt. New York, NY, USA: ACM
Press, 2004, pp. 74–83.

[11] E. Prud’hommeaux and A. Seaborne, SPARQL Query
Language for RDF, W3C, July 2005. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[12] T. Ernst and A. de La Fortelle, “Car-to-car and car-to-
infrastructure communication system based on NEMO and
MANET in IPv6,” in Proc. of 13th World Congress and Ex-
hibition on Intelligent Transport Systems and Services, October
2006.

[13] A. Laouti, P. Jacquet, P. Minet, L. Viennot, T. Clausen,
and C. Adjih, “Multicast Optimized Link State
Routing,” Inria, Tech. Rep., 2003. [Online]. Available:
http://hal.inria.fr/inria-00071865


