

# **Trusted Routing for VANET**

Terence Chen, <u>Olivier Mehani</u> and Roksana Boreli National ICT Australia Ltd University of New South Wales, Australia



Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council



#### Presentation Overview

**O** • NICTA

- Introduction:
  - Trust in VANET
  - Challenge
  - Our approach
- Assumptions
- Proposed framework
- Applying the framework to OLSR
- Evaluation of the framework
  - Resilience to attacks
  - Computational and bandwidth overhead
- Conclusion and further work

#### Introduction

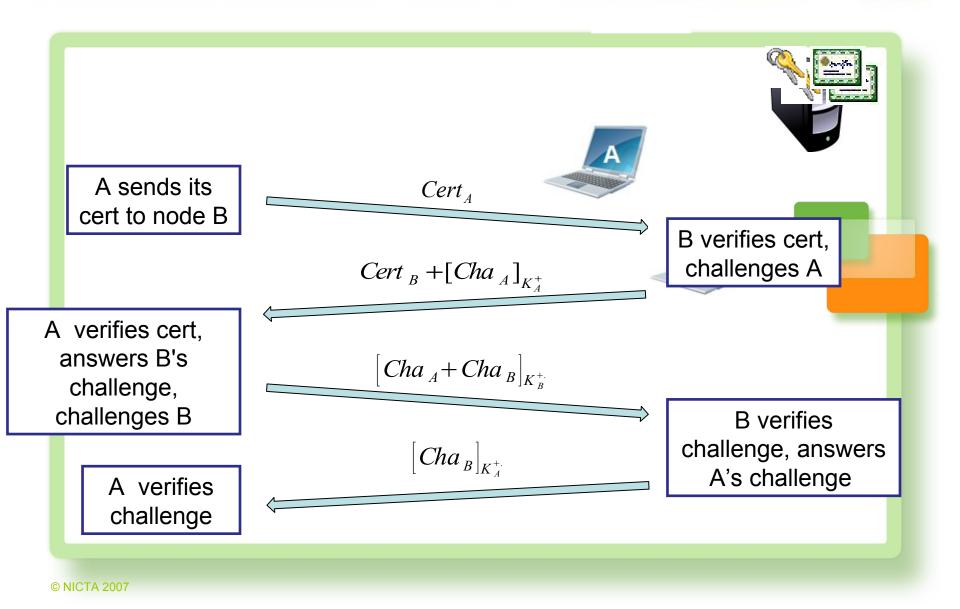


- Trust in VANET
  - Cooperative nature: Vulnerable
  - Lack of trust standard in VANET routing protocol
- Challenges of trust establishment for VANET
  - Highly dynamic
  - Distributed
  - Resource constraints
- Trusted routing framework
  - Authentication of messages, nodes and routes
  - Limited assistance with off-line Certificate Authority (CA)

#### **Proposed Framework**



- Three-module framework:
  - Message authentication
  - Node-to-node authentication
  - Cumulative routability verification
- Prerequisites:
  - All nodes are loosely synchronized (NTP/GPS)
  - Each node has generated a key pair,  $K_i^+ / K_i^-$
  - Off-line CA distributes following components to each node
    - Public key of CA,  $K_{ca}^+$
    - Certificate that binds its network ID (e.g. IP address) and its public key:  $Cert_i = [ID_i, K_i^+, T_v, T_e]_{K_{ex}^-}$

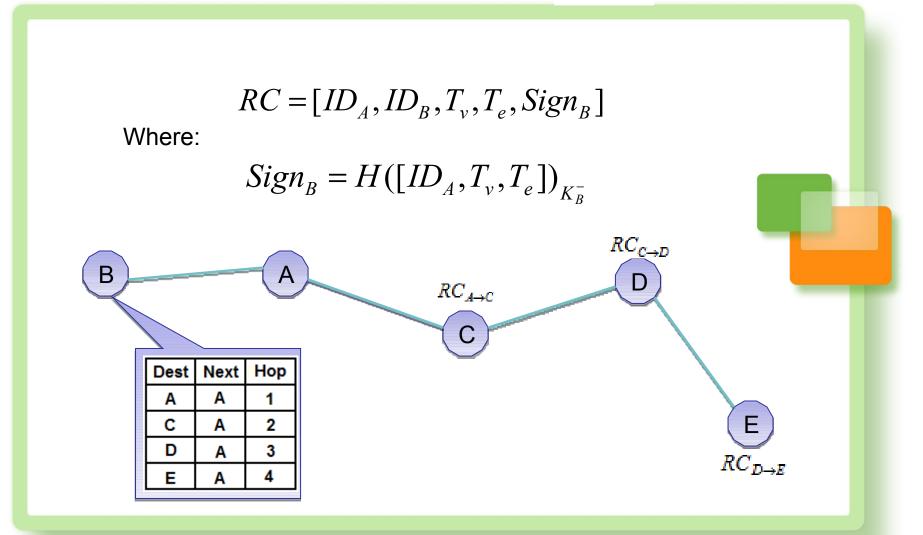

#### Message authentication

- Purpose:
  - To protect routing control messages
- Originator digitally signs every message
  - Message integrity
  - Message authentication
  - Non-repudiation
- Do not include variable fields
  - Hop-count
  - Time-to-live

#### Node-to-node Authentication

- Purpose:
  - Defines a way to verify nodes in minimum iterations
- Authentication between two nodes
- Exchange certificate & public keys
- Challenge peer to confirm identity
  - i.e. possession of corresponding private key
- Exchange secrete keys for quick re-authentication

## Node-to-node authentication (cont.)




**O** • NICTA

# **Cumulative Routability Verification**

- Purpose:
  - Verify hop-by-hop connectivity along path
- A node must provide a piece of evidence to prove the connectivity
- Evidence: Routability Certificate (RC)
  - Signature from neighboring node regarding to the link
  - Exchange RCs after node-to-node authentication
  - Originator uses RCs to prove connectivity
  - Verify a route cumulatively

## Cumulative Routability Verification (cont.)



NICTA

© NICTA 2007

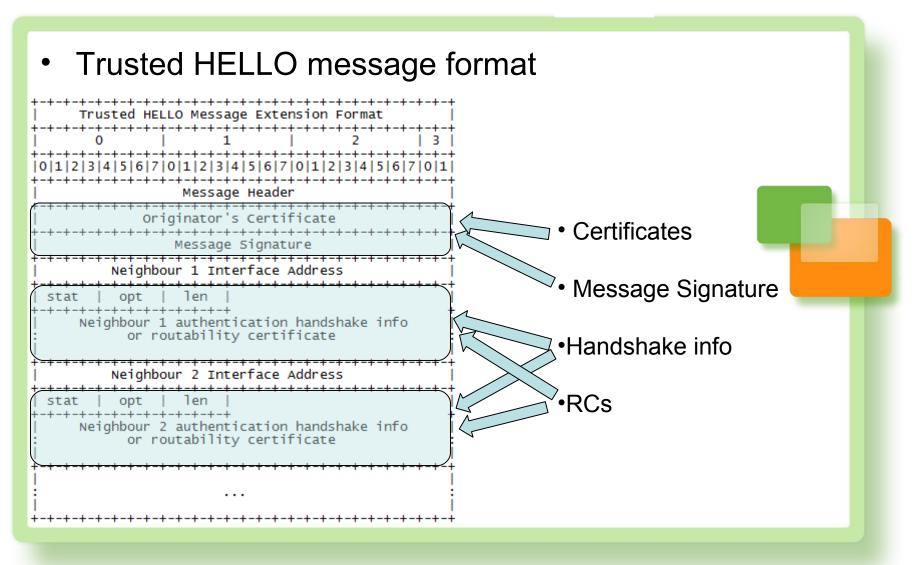
#### **Trusted Extension for OLSR**



- Optimised Link State Routing (OLSR) protocol
  - Table driven, proactive
  - Use Multipoint Relays (MPR) to reduce control messages
  - Link status is disseminated to the entire network
  - HELLO message
    - Local control message
    - Link sensing
    - Neighbor discovery
    - MPR selector set discovery
  - Topology Control (TC) message
    - Global control mssage
    - Link state announcement

© NICTA 2007

# Trusted Extension for OLSR (cont.)

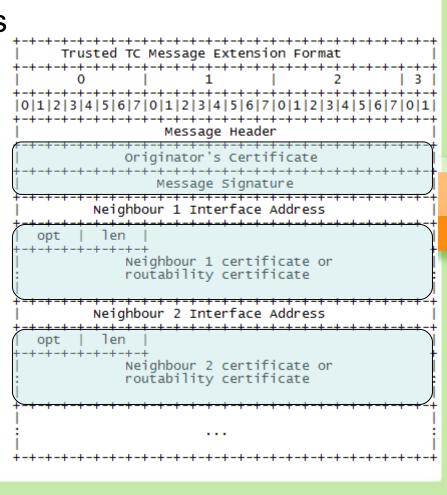

#### • HELLO message extension

- Message signature
- Authentication info is embedded in standard HELLO messages
- Concurrent handshakes among multiple neighbors

#### • Operations:

- Distribute certificates
- Node-to-node authentication handshake
- Exchange RCs

## Trusted Extension for OLSR (cont.)




NICT

# Trusted Extension for OLSR (cont.)



- TC message extensions
  - Message signature
  - Carry RC and certificate
    after each neighbor
    address
  - Similar format to trusted
    HELLO message
- Operation:
  - Verify RC before add
    links to routing table
    - Confirm connection to
  - each node hop-by-hop



# **Resilience to Attacks**



| Attack/<br>misbehavior  | Description                                                            | Countermeasure                                   |
|-------------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Illegal Access          | Device without<br>permission/certificate                               | Message signature<br>Node-to-node authentication |
| Impersonation           | Identity spoofing: MAC or IP                                           | Node-to-node authentication                      |
| Message<br>modification | Rushing<br>ANSN attack                                                 | Message signature                                |
| Link spoofing           | Spoofing destination that couldn't reach                               | Routability verification                         |
| MPR selector isolation  | A node isolate its MPR<br>selector by not include it in<br>the message | Routability certificate sign by all neighbors    |

## Bandwidth and Computational Overhead

- Public key scheme dependent
- Bandwidth overhead Size of RC:

$$L_{rc} = 2 \times L_{ip} + L_{time} + L_{sig}$$

NICT/

#### Size of Certificate:

$$L_{cert} = L_{ip} + L_{pub} + L_{time} + L_{sig}$$

# Bandwidth and Computational Overhead (cont.



• Benchmark for some cryptographic algorithm

| Operation                          | Milliseconds/Operation |
|------------------------------------|------------------------|
| RSA 1024 Encryption / Decryption   | 0.08 / 1.46            |
| DSA 1024 Signature /Verification   | 0.45 / 0.52            |
| RSA 2048 Encryption / Decryption   | 0.16 / 6.08            |
| RSA 2048 Signature / Verificatio   | 6.05 / 0.16            |
| ECIES 233 Encryption / Decryption  | 21.17 / 12.15          |
| ECDSA 233 Signature / Verification | 10.62 / 12.80          |
| MD5                                | 0.0045 (per 1KB data)  |
| SHA-1                              | 0.0065 (per 1KB data)  |

Crypto++ 5.6.0, Intel Core2 Duo 1.83 GHz

#### **Conclusion and Future Work**

- Proposed trust establishment framework
  - Message authentication
  - Node-to-node authentication
  - Routability Verification
- Future work
  - Find a signature scheme to reduce overhead
  - Apply framework to other protocol, e.g. AODV





#### From imagination to impact