NICTA

Analysis of TFRC in Disconnected Scenarios and Performance Improvements with Freeze-DCCP

Olivier Mehani Roksana Boreli Thierry Ernst

www.nicta.com.au

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

From imagination to impact

Analysis of TFRC in Disconnected Scenarios and Performance Improvements with Freeze-DCCP

- 2 Model of TFRC in Disconnected Scenarios
- Freeze-DCCP/TFRC
- 4 Future Work and Discussion

Context TFRC and DCCP in One Slide

- TCP-Friendly Rate Control (TFRC):
 - rate-based congestion control mechanism
 - needs packets losses p and RTT R

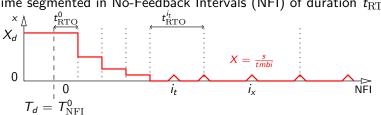
•
$$X_{\mathrm{Bps}}(p, R) = rac{s}{R\sqrt{rac{4p}{3}} + t_{\mathrm{RTO}}\sqrt{rac{27p}{8}}p(1+32p^2)}$$

- mimicks TCP's behavior
- TCP-fair congestion control to other transports
- Datagram Congestion Control Protocol (DCCP)
 - unreliable datagrams
 - congestion control
 - multiple congestion control mechanisms (CCIDs)
 - CCID3 uses TFRC
 - interesting replacement to non-congestion aware UDP to carry real-time traffic over shared networks

Context Motivations for Mobility Support and Issues

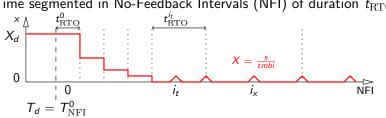
- Emerging mobile use-cases
 - mobiles phones and PDAs
 - intelligent transportation systems (ITS)
- Various types of wireless physical technologies
 - 802.11b/g/p (Wi-Fi)
 - 802.16 (WiMAX)
 - UMTS
 - Link characteristics
- Common wireless issues
 - temporary loss of signal
 - interferences
 - tunnel
- Mobility issues
 - MIPv6 Handoff times
 - disconnections during handoffs (vertical or horizontal)

Problems Raised by Disconnections or Handoffs

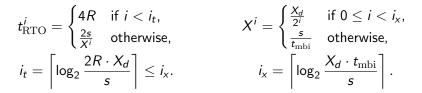

- Effects at the TFRC sender
 - feedback messages can no longer be received
 - **2** gradual reduction of the sending rate (X)
 - **③** increase of the retransmission timeout (t_{RTO})
- Effect on the connection
 - Iost packects during the disconnection
 - Iower sending rate upon reconnection
 - additionally, poor adaptation to new network conditions (*e.g.* technology, congestion)

Problems Raised by Disconnections or Handoffs

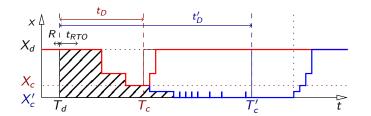
NICTA


- Effects at the TFRC sender
 - feedback messages can no longer be received
 - **2** gradual reduction of the sending rate (X)
 - (a) increase of the retransmission timeout (t_{RTO})
- Effect on the connection
 - $\textcircled{0} \quad \text{lost packects during the disconnection}$
 - Iower sending rate upon reconnection
 - additionally, poor adaptation to new network conditions (*e.g.* technology, congestion)

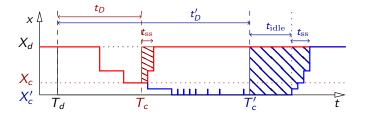
 \Rightarrow Based on the sender observations, we want to quantify the impact of disconnections on the connection performance.



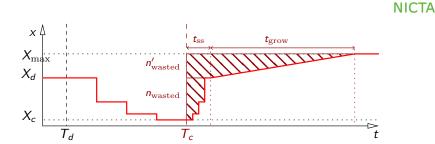
Time segmented in No-Feedback Intervals (NFI) of duration
$$t_{
m RTO}$$
.


$$t_{\text{RTO}}^{i} = \begin{cases} 4R & \text{if } i < i_{t}, \\ \frac{2s}{X^{i}} & \text{otherwise,} \end{cases}$$
$$i_{t} = \left\lceil \log_{2} \frac{2R \cdot X_{d}}{s} \right\rceil \le i_{x}.$$

Time segmented in No-Feedback Intervals (NFI) of duration $t_{\rm BTO}$.


Number of Lost Packets over the Disconnected Period

$$n_{\text{lost}} = \begin{cases} \left\lfloor \frac{\frac{7}{8} \frac{t_D X^0}{s}}{s} \right\rfloor & (t_D \le t_{\text{RTO}}^0) \\ \frac{7}{8} \frac{t_{\text{RTO}}^0 X^0}{s} + \sum_{i=1}^{i_D-1} \frac{t_{\text{RTO}}^i X^i}{s} + \frac{t_{\text{RTO}}^{i_D} X^{i_D}}{2s} \right\rfloor & (\text{otherwise}) \end{cases}$$


$$(1)$$

Amount of "Wasted" Bandwidth upon Reconnection

$$n_{\text{wasted}} = \frac{1}{s} \left(t_{\text{idle}} \cdot X_d + \sum_{i=0}^{n_{\text{ss}}} R_{\text{new}} \left(X_d - 2^i X_c \right) \right)$$
(2)

Additional "Wasted" Bandwidth on Bigger Networks

$$n'_{\text{wasted}} = \frac{1}{s} (X_{\text{max}} - X_d) (t_{\text{idle}} + t_{\text{ss}}) + \frac{R_{\text{new}}}{s} \sum_{i=0}^{n_{\text{grow}}} (X_{\text{max}} - X^i)$$
(3)

Analytically-Derived Possible Performance Improvements

to	UMTS	802.16	802.11	
from	~		b	g
Packet losses (1)				
UMTS	306	236	226	224
802.16	2760	2614	2614	2614
802.11b	1080	1078	1078	1078
802.11g	2909	2907	2907	2907
Unused bandwidth (2) & (3) [500 B packets]				ackets]
UMTS	0	82938	263	109541
802.16	0	471	155	1029
802.11b	0	0	1085	54674
802.11g	0	0	0	4699
► Link characteristics	▶ Handoff tim	es 🕩 Compa	re to simulati	on results

TFRC in disconnected scenarios and mobile handoffs

- more or less graceful handling of disconnections
- can be optimized by e.g.
 - being given information about upcoming disconnections
 - Probing the network upon reconnection to adapt faster

TFRC in disconnected scenarios and mobile handoffs

- more or less graceful handling of disconnections
- can be optimized by e.g.
 - being given information about upcoming disconnections
 - Probing the network upon reconnection to adapt faster

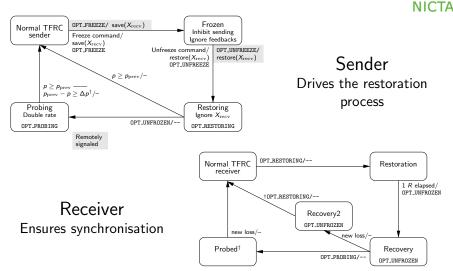
 \Rightarrow We propose such an addition to TFRC and implement it within DCCP.

NICT

Related work: Freeze-TCP can temporarily suspend a TCP connection

- in case of predictable disconnections on the receiving end
- rate restored to previous value when connectivity is back

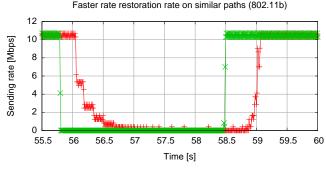
Additional features: better support for mobility handoffs sender-based freezing to account for mobile senders slow-start-like probing for better capacity along the new path


Freeze-DCCP/TFRC mechanism:

tight cooperation between the sender and the receiver using DCCP-level options

new states to support the unfreezing phase:

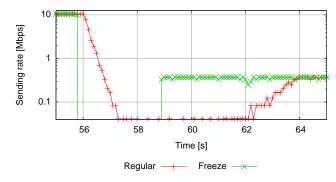
- restoration of the rate or fallback to the newly computed value
- Probing the path for a higher capacity


Freeze-DCCP/TFRC Additional states and options needed to support freezing

†When a packet is lost, the receiver computes and reports a p equivalent to the currently observed $X_{\rm recv}.$

Freeze-DCCP/TFRC Performance of DCCP vs. Freeze-DCCP in simulations

- ns-2 simulations for realistic networks
- $I_{\rm tech}$, $AR_{\rm tech}$: wireless network side
 - simulated using a wired link Link characteristics
- *I*_{internet}: wired internet
- disconnections using \$ns_ rtmodel-at \$discotime_ down \$ar_ \$cn_ • Handoff times



Faster rate restoration rate on similar paths (802.11b)



Graceful adaptation to smaller capacities (802.11b to UMTS)

• Note: logarithmic scale

• Though: the probing phase can still be improved.

to	UMTS	802.16	80	802.11	
from		002.10	b	g	
Packet losses (DCCP/TFRC only)					
UMTS	253.3	269.8	273.6	275.4	
802.16	1732.3	1734.6	1734.6	1734.6	
802.11b	856	855.5	855.3	855.3	
802.11g	2470.9	2470.4	2470.2	2470.1	
Unused bandwidth [500 B packets]					
	50.5	54018.05	2209.5	92156.1	
UMTS	13.4	3607.9	9342.75	89328.6	
802.16	12.45	1827.95	603.05	4185.75	
002.10	5	591.15	150.9	1520.35	
000 11	150.45	28314	2101.75	57970.65	
802.11b	0	15278	47.45	1045.05	
000 11	42.5	2104.3	943.4	4313	
802.11g	0	7172.75	46.5	188.45	

Link characteristics Handoff times Compare to analytical predictions

- Single TCP flow from AR to CN
- Wait for settlement of rate upon reconnection
- 100 s samples afterwards

to		802.16	802.11	
from	~ 010113	002.10	b	g
UMTS	0.6	0.3	0.2	0.1
802.16	1.6	1.3	1.1	0.9
802.11b	1.3	1	0.9	0.7
802.11g	1.5	1.2	1	1.1

- Values in [0.5, 2] considered "reasonably fair"
- Closely similar to DCCP/TFRC in the same conditions

Freeze-DCCP/TFRC

Better network usage when/as soon as it is available;

More flexible than Freeze-TCP:

- can accomodate a mobile sender;
- adapted to multiple network paths and technologies;

Mobility-aware transport protocol well suited for real-time traffic (*e.g.* VoIP or video streaming).

TCP fairness similar to regular TFRC

Future Work and Discussion

NICTA

- Conclusion
 - model of TFRC in disconnected/mobility scenarios
 - Freeze-DCCP/TFRC
 - suspend the connection to avoid losses
 - restores the parameters to keep the previous rate
 - probes the new network to adapt faster
 - needs cross-layer information
 - reasonably TCP-fair
- Future work
 - Linux 2.6 implementation of Freeze-DCCP
 - experimentation over real wireless links
 - more thorough fairness evaluation
 - Cross-layer framework

Questions?

Thanks

olivier.mehani@nicta.com.au http://www.nicta.com.au/people/mehanio/freezedccp

Technology	Bandwidth [bps]	Delay [s]
UMTS	384 k	125 m
802.11b/g	$11\mathrm{M}/54\mathrm{M}$	10 m
802.16	9.5 M	40 m
Mobility Requirements Scenario Simulation Results		

$$T_{
m handoff} = 2.5 + RTT_{
m wireless} + RTT_{
m wireless}$$

= 2.6 + 2Delay_{
m wireless}

Destination network	$T_{\rm handoff}$ [s]
UMTS	2.85
802.16	2.68
802.11b/g	2.62
Mobility Requirements Analytical Results	 Scenario Simulation Results