
Characterisation of the Effect of a
Measurement Library on the

Performance of Instrumented Tools

Olivier Mehani?,1, Guillaume Jourjon1, Jolyon White1,
Thierry Rakotoarivelo1, Roksana Boreli1, Thierry Ernst2

?Corresponding author: olivier.mehani@nicta.com.au
1Nicta, Sydney. Eveleigh, NSW, Australia, first.last@nicta.com.au
2Inria, Imara Team, Paris, Rocquencourt, France, thierry.ernst@inria.fr

Published: May 16, 2011
Copyright © 2011 NICTA

mailto:olivier.mehani@nicta.com.au
mailto:first.last@nicta.com.au
mailto:thierry.ernst@inria.fr

Abstract

The OMF Measurement Library (OML) is an instrumentation system which
enables an experimenter to process any type of measurements from distributed
applications and collect them in a unified way. We present a comprehensive
study of the performance of this library. The analysis focuses on the behaviour,
accuracy and precision of instrumented applications, as well as the background
footprint such as CPU load and memory usage. To this end, we have modified
typical network measurement tools (Iperf) and libraries (libtrace, libsigar) to
use OML as their reporting channel. Following extensive experiments, we
find little or no negative impact of OML when comparing the OML-enhanced
tools to their original versions. Moreover, in the case of Iperf, when we find
significant differences, they are positive, with improvements in the accuracy of
both the network probing and jitter measurements. We discuss the implications
of using OML in the context of experiment-based networking research and give
recommendations on its use and the analysis of the produced results.

Mehani et al. Characterisation of the Effect of a Measurement Library. 3

1 Introduction

Measurement is a foundation stone of scientific research. Many types of mea-
surements must be made using some device or tool, which will have limited
accuracy and precision, and may even influence the phenomena that the sci-
entist is attempting to observe. Therefore, without characterising the tools,
it is impossible to assess the validity of conclusions that are based on these
measurements.

Nevertheless, in the networking community, many published experimental
studies shed little light on the tools and methods they use to produce their
measurements. This often makes it difficult to accurately reproduce exper-
imental results found in the networking research literature, as compared to
some other “hard sciences.” As an example, [10] surveyed all papers accepted
at a renowned conference of the networking field of research and found that,
in many cases, their evaluation sections could be significantly improved with
respect to established scientific criteria. The major areas identified for improve-
ment were in the reporting of measurement precisions and the description of
the experimental methods used.

Networks are closely linked to the software that embodies and controls them.
Many of the tools used to observe network behaviours consist of software exe-
cuting alongside the processes under study, on the same machine and operating
system; if not designed carefully such tools risk disrupting the performance, or
even the functionality, of the systems they measure. It should therefore be of
great interest to researchers to characterise the influence of software measure-
ment tools on their experiments, and to assess the accuracy and precision of
the measurements they produce. Curiously, although there are numerous pub-
lished software tools for network-based measurement, few of them have been
thoroughly studied in this way.

Among the best known Internet measurement tools are the venerable tcp-
dump and Iperf. Tcpdump, a command line tool for packet capture, has been
shown to accurately report at capture rates up to gigabits per second [19].
Iperf allows researchers to generate a traffic load to evaluate the capacity of
a network or resilience of a system; the authors of [11] showed that it gener-
ated the highest load on networks paths compared to a number of other traffic
generators.

Tools like Iperf and tcpdump are stand-alone and generate measurements
in application-specific formats that are stored locally. This limits their us-
ability in large-scale distributed measurements, particularly Internet measure-
ments, where observations from several tools on many network hosts must
be correlated. For instance, CPU and memory usage may need to be cross-
analysed with application and network behaviour such as throughput and jit-
ter, across many nodes. Therefore, the networking community can benefit

4 NICTA Technical Report TR-4879

from a distributed infrastructure enabling these sorts of flexible measurements.
Additional desirable features include the ability to perform real-time remote
queries on collected data, support for disconnected modes of operation, and
measurement-based steering of running experiments. This kind of architecture
has been discussed in depth for some time, in particular in the GENI project
through the I&M cluster.1 Nevertheless, no standard procedure has yet been
accepted or evaluated to implement this vision.

Advanced frameworks already exist that address these issues, such as Plan-
etFlow [6] and CoMon [16] which provide flow logging and slice or node moni-
toring for PlanetLab, including sophisticated query mechanisms; CoMo [8] is a
similar distributed flow measurement tool but not tied to PlanetLab. MINER2

and OML [23], on the other hand, specialise in instrumenting applications and
shepherding their measurements into central databases for convenient real-
time or offline analysis, without being tied to a specific type of measurement
or platform. There are no studies that characterise these measurement collec-
tion tools and platforms in terms of their effects on the accuracy and precision
of the measurements of the underlying systems they are helping researchers to
observe.

Our contribution in this paper is to provide a comprehensive study of one
measurement framework, OML, in terms of the potential biases it introduces in
measurements it collects, and its impact on the performance of tools that use it
for instrumentation. OML is described in detail in Section 2.1; we used version
2.5.0, the most current at the time. We chose to evaluate the popular tools
Iperf (version 2.0.5) and libtrace [1] (version 3), and to this end instrumented
them using OML; what they measure and our approach to instrumenting them
are discussed in Section 2.2. We then designed a series of experiments (Sec-
tion 2.3) to determine what effect OML instrumentation has on application
performance and measurement accuracy of our tools. We investigated the im-
pact of several experimental factors on various dependent variables for both
application performance (Iperf) and accuracy of measurement (libtrace), using
analysis of variance (ANOVA) techniques, for which the results are presented
in Section 3. This allows us to quantify the operating ranges and scenarios
where the effects of OML are significant and where they are negligible. We
discuss this at length in Section 4; the overall finding is that when statistically
significant differences are found the OML-instrumented tools usually provide
better or equal performance.

Our results support the use of OML as a tool for network researchers due
to its simplicity of use. Even a naive instrumentation implementation using
OML can perform equivalently to a sophisticated hand-coded measurement
collection strategy if the measurement rate is not too high, and we provide

1http://groups.geni.net/geni/wiki/GeniInstMeas
2http://miner.salzburgresearch.at/

http://groups.geni.net/geni/wiki/GeniInstMeas
http://miner.salzburgresearch.at/

Mehani et al. Characterisation of the Effect of a Measurement Library. 5

recommendations to researchers on how to achieve this in Section 4.4. This
study itself also shows the advantages of OML in a distributed environment as
it would not have been possible to perform the volume of experiments presented
here if we did not have OML to provide marshalling of results with coherent
timestamping from a variety of sources into one convenient central database.

2 Method

In order to evaluate the effects of OML 2.5.0, we have designed several ex-
periments. We compared performance indicators and assessed measurement
accuracy between the original and OML-instrumented software tools. This
section first presents some background information about OML and our mod-
ifications to the Iperf traffic generator and the libtrace packet capture library.
We then describe our experiment designs and procedures.

2.1 OML

OML [23] is a multithreaded instrumentation and measurement library, which
was first developed as a component of OMF [18], but is now a stand-alone open
source software3 which can collect any type of measurements from any type
of distributed applications and store them in a unified format. Measurement
reporting via OML can be added alongside original reporting mechanisms or
as their replacement. A unified approach using OML to collect measurements
allows effortless correlation of data from different distributed sources to inves-
tigate network anomalies, or test research hypotheses or developed prototypes.

OML has three components that allow a user to automatically generate and
collect measurements. First, a developer defines Measurement Points (MP)
within their applications or services. An MP is an abstraction for a tuple of
related metrics which are reported (“injected”) by the application at the same
instant. At run-time the experimenter can request all or a subset of these MPs
to generate Measurement Streams (MS). Samples from unselected MPs are
discarded, as they are deemed irrelevant for the current experiment. MSs can
be instructed to report samples from their MPs as soon as a specified number
(one or more) of samples has been injected, or compute an aggregate at a
defined frequency. Before being streamed towards repositories to be stored for
later analysis, MSs can also be further processed.

This processing is done through OML’s filtering mechanism, which extends
the periodic aggregation mentionned above. An experimenter can specify that
a function be applied on some of the fields of an MS to format the data or com-
pute more specific metrics. For example, for an application reporting the size
of each packet it receives in an MP, a filter may be used to sum these samples

3http://oml.mytestbed.net

http://oml.mytestbed.net

6 NICTA Technical Report TR-4879

F4

F5

F1

F2

F3
OML

Server
SQL
Data
base

Control Node 1

OML
Server

SQL
Data
base

Control Node 2local
fileApplication liboml2

MP1

MP2

MP3

(x1,...,xN)

(y1,...,yM)

(z1,...,zP)

MS1

MS2

MS3

MS4

MS5

Figure 1: Measurement data path in OML. Three measurement points are
filtered to generate five measurement streams (source: [23]).

over a 1 second period to provide an estimate of the immediate throughput.
This throughput can then be further processed by an averaging filter with a 1
minute period. OML provides some generic filters such as the aforementionned,
but also exposes an API so more specific filters can be easily developped.

Figure 1 shows an example OML data path. An application injects mea-
surement into three MPs. At run-time, the tuples generated by injections in
the MPs are combined in order to form five MSs. These newly created streams
are then filtered, and the results are directed to one of two different collection
servers or a local file. The right part of Figure 1 represents the server side
where the OML server serves as a front-end to a database.

By default, MSs are sent reliably to the server using TCP. However, if the
network path used for reporting experiences transient losses or cannot provide
a sufficient capacity, this may cause the buffers at the OML client to fill up,
and samples could be lost before having been sent to the server.

OML also provides a timestamping mechanism based on each reporting
node’s time (oml_ts_client). Each server remaps the MSs they receive to
an experiment-wide timebase (oml_ts_server) which allows some time com-
parisons to be made between measurements from different machines. This
mechanism however does not remove the need for a good time synchronisation
between the involved experimental nodes.

OML has been integrated in many applications, such as traffic genera-
tors, passive network measurements, GPS coordinate recorders, and pres-
sure/temperature sensor monitors.4

4http://oml.mytestbed.net/wiki/omlapp

http://oml.mytestbed.net/wiki/omlapp

Mehani et al. Characterisation of the Effect of a Measurement Library. 7

2.2 Instrumented Tools

For this study, we instrumented tools for network measurement (network prob-
ing, packet capture). As a recent study suggests that Iperf is the best perform-
ing network probing tool [11], we have chosen this tool as the traffic generator.
For network measurements, we use the canonical tcpdump, as well as a more
recent packet capture library, libtrace [1]. In addition, we also instrumented a
system metrics-measurement library in order to allow us to observe the poten-
tial additional load induced by the use of the tools we are characterising. This
section details these instrumentations.

2.2.1 Network Probing: Iperf

Iperf is an open source network probing tool.5 It allows an experimenter to
test the characteristics of a network path using either TCP or UDP. Its code
is multithreaded to limit the impact of reporting—either on the console or in
a CSV file—on the high-speed generation of probe packets. Several patchsets
exist to support other transport protocols such as DCCP or UDP-Lite.6 This
tool’s versatility and ease of use have allowed it to gain widespread use in the
network community, both for traffic generation [7, 12] and as a measurement
tool [15,17,21,22].

Iperf can report a number of metrics depending on the transport protocol in
use. For TCP only the transferred size, from which the throughput is derived,
can be observed. For UDP, packet loss and jitter information can also be
reported. The periodicity of Iperf’s reports is configurable from once for an
entire run to as frequently as every half a second. The internal aggregation
function depends on the metric: the transferred size and losses are summed,
while the latest value to date is reported for the jitter.

There tends to be some confusion with respect to the definition of what
jitter is [3]. In the case of Iperf, the term refers to the variation in packets
transit times, as described in [20]. It is computed at packet p as

τp = TRcv
p − T Snd

p

∆τp = |τp − τp−1|

Jp = Jp−1 +
1

16
(∆τp − Jp−1). (1)

As this jitter itself is based on the variation of transit times, rather than the
immediate values, it is rather robust to loose time synchronisation between
sender and receiver.

5http://iperf.sourceforge.net/
6http://www.linuxfoundation.org/collaborate/workgroups/networking/Iperf

http://iperf.sourceforge.net/
http://www.linuxfoundation.org/collaborate/workgroups/networking/Iperf

8 NICTA Technical Report TR-4879

Send (or
receive) packet

Aggregate metrics

New report
needed?

Format as CSV,
write to file

oml-o

oml-O

Iperf main thread

Iperf processing and
reporting thread

Match packet-
-sending rate

Interval-based
aggregation?

omlc_inject()

omlc_inject()

OML filter

OML filter

Send to server
or store in file

OML filtering
thread

Wait for
interval

Figure 2: Iperf main loop (black) and OML instrumentation additions
(colours). OML reporting is implemented in two sections. The legacy mode
(oml-o, blue) reports aggregate metrics computed by Iperf, while the advanced
mode (oml-O, green) reports each packet. In both cases, the data can be fil-
tered before being sent for storage (orange). Iperf can delegate reporting to a
second thread if activated, while OML uses a filtering thread for time-based
aggregates (e.g. per-second averages).

We have instrumented version 2.0.5 of Iperf to support reporting via OML.7

Two separate modes of operation have been implemented in the form of new
reporting styles, legacy (iperf -y o) and advanced (iperf -y O), which differ
in the amount of processing that is done in the application. Table 1 summarises
the performance metrics directly reported by the different flavours of Iperf used
in this study. Figure 2 shows the main traffic-generating loop of Iperf, and how
the OML instrumentation has been integrated into it.

In the legacy mode, the aggregation of the measurements is done using
Iperf’s standard code, and the periodic reports are sent out through OML via
three MPs: transfer for the size, losses for lost and sent datagrams, and
jitter for Iperf’s implementation of (1). In the advanced mode, Iperf di-
rectly reports information about each packet sent or received via OML, in the
packets MP which contain identification, size and both sent and received (if
relevant) times for each packet, down to the microsecond. The advanced mode
is more in line with OML’s approach, where the measured data is reported ver-

7The latest instrumented code is available at http://omf.mytestbed.net/projects/

Iperf/repository/show?rev=oml/master

http://omf.mytestbed.net/projects/Iperf/repository/show?rev=oml/master
http://omf.mytestbed.net/projects/Iperf/repository/show?rev=oml/master

Mehani et al. Characterisation of the Effect of a Measurement Library. 9

Table 1: Summary of the information reported by the various flavours of Iperf
considered in this study.

XXXXXXXXXXXXflavour
transport Reliable Unreliable

stream datagrams

Vanilla
Transferred size, idem +

Throughput, Losses, Jitter

OML legacy Transferred size
idem +

Losses, Jitter

OML advanced
Packet ID and size, emission

and reception timestamps

batim by the application and all processing and consolidation is done through
filters, thus allowing more experiment-specific treatment without impacting
the main operation of the application. Noting that, in most of the literature
based on Iperf, there is a lack of precise reporting of versions, platforms and
parameters, we also implemented MPs to report such ancillary information
about the experiment as the version numbers and command line arguments.

The code we modified to integrate OML is part of the main sending/reporting
loop of Iperf. It therefore has a potential to impact the application’s perfor-
mance. Section 2.3.1 describes the experiment we designed to evaluate this
effect.

2.2.2 Packet Capture: tcpdump and libtrace

Packet capture in networking environments is usually done via wrapper li-
braries hiding the operating system’s underlying API. Perhaps the most com-
mon library for this purpose is the libpcap, derived from work on tcpdump.8

A more recent library for the same purpose is the libtrace [1], which offers a
broader range of input and output APIs and formats.

In this study we focus on the use of both the libpcap in its most simple
way with the tcpdump tool and our implementation of a packet-capturing ap-
plication with OML reporting written as a wrapper around libtrace functions,
oml2 trace. In our case, both libraries use the Linux Socket Filter [9] to get
packets from the kernel.

The main difference between these tools concerns the range of captured
frame information. Indeed, in the case of tcpdump, the binary Ethernet frame
is dumped in its entirety (up to the maximum snarflen, as specified by the
experimenter). With oml2 trace, the information is read from the protocol
headers and injected into different MPs, thereby giving the experimenter more

8http://tcpdump.org

http://tcpdump.org

10 NICTA Technical Report TR-4879

Table 2: Comparison the way information is reported by both packet-capturing
applications.

Protocol Fields tcpdump oml2 trace

Ethernet Packet ID, MAC

B
in

ar
y

d
u
m

p
(p

os
si

b
ly

tr
u
n
ca

te
d

so
s
n
a
r
f
l
e
n
)

addresses, etc. radiotap

(Radiotap) Wireless channel MP
characteristics

IP ID, length, ip MP
addresses, etc.

TCP/UDP ID, ports, tcp or udp
length, etc. MPs

Timestamp All MPs

control on what is collected. Both applications also support Radiotap pseudo
headers to provide information about wireless channels.9

Though OML provides timestamping on its own, packets captured from the
Linux Packet Filter carry precise timing information. As version 2.5.0 of OML
does not provide a mechanism for the application to set the oml_ts_client of
the reports, the capture timestamps are included as fields of the measurement
points.

Table 2 summarises how the considered tools make these metrics available
to the experimenter. It highlights the much finer granularity available from
oml2 trace.

2.2.3 Resource Usage: Sigar

Sigar (System Information Gatherer And Reporter) is a library which pro-
vides cross-platform system performance metrics.10 An OML-instrumented
tool, oml2 nmetrics, has been developed based on this library in order to en-
able basic system monitoring.

This tool can report system information such as CPU load, memory used
and network operation as well as per-process state and system usage. In our
study, we only use this tool to observe the changes in system load following
the introduction of OML-instrumented applications.

9http://www.radiotap.org
10http://support.hyperic.com/display/SIGAR/Home

http://www.radiotap.org
http://support.hyperic.com/display/SIGAR/Home

Mehani et al. Characterisation of the Effect of a Measurement Library. 11

Snd Rcv
NetEm

o

Figure 3: Experiment topology. An Iperf sender Snd generates traffic towards a
receiver Rcv on a link capacity-shaped using NetEm. When OML applications
are used, measurements are sent over the control network to OML server o.

2.3 Experiments

We use the simple topology illustrated in Figure 3 for numerous experiment
trials with varying applications and parameters on the nodes. We used the
NetEm emulation software to vary the available link capacity between the
sender (Snd) and the receiver (Rcv). We ran two main types of experiments
to characterise the OML-instrumented tools and their vanilla equivalents.

To provide a reference for meaningful comparisons, we always run a tcp-
dump instance on both Snd andRcv to let us compute the actual rate and jitter
a posteriori, which we assume to be accurate estimates of the ground truth.
We can therefore observe the trials both through the OML-instrumented tools
and the tcpdump packet traces, using the following main metrics:

rate RS
X observed by tool X (i for Iperf, t for tcpdump) at node S (Snd for

sender, Rcv for receiver) and,

per-packet timestamps T S
X from which jitters JX can be computed at the

receiver.

The remainder of this section describes the design of our experiments to
evaluate the impact of OML instrumentation on the performance and accuracy
of applications, and on the system resources.

12 NICTA Technical Report TR-4879

Table 3: Experiment design to characterise the impact of the OML instrumen-
tation on Iperf.

nooml-c oml-c

threads nothreads threads nothreads

598 samples · · · · · · 598 samples

oml-o oml-O

threads nothreads threads nothreads

598 samples · · · · · · 598 samples

2.3.1 Application Performance

The first potential impact we want to test is the effect of OML on an applica-
tion’s performance. In the specific case of Iperf, we are therefore interested in
how the traffic generator performance and the accuracy of the reported mea-
surements may be altered. Thus our experiment’s null hypothesis is that the
OML instrumentation has no significant impact on the packet sending rate
of Iperf’s traffic generator, and on the accuracy of Iperf’s report of measured
throughput and jitter.

Experimental Factors Four fixed factors may prove relevant to our working
hypothesis above.

Iperf flavour and reporting mode The main concern for this experiment,
we want to assess whether the OML instrumentation and the various
reporting modes introduce a deviation from the standard version. This
could be seen as two nested factors, i.e. OML instrumentation or not,
with the various reporting modes nested within. However, it made for a
simpler design to flatten them into a single factor with four treatments:

nooml-c No modification, CSV reporting to a file;

oml-c OML instrumentation in the code, but CSV reporting to a file; this
doubles as a sanity-check to make sure the instrumentation didn’t
break any mechanism;

oml-o OML instrumentation with legacy OML reporting;

oml-O OML instrumentation with advanced OML reporting.

Required sending rate At high rates the processing of each packet for mea-
surement reporting may take longer than the inter-packet sending period,

Mehani et al. Characterisation of the Effect of a Measurement Library. 13

thus impending the sending rate. Although the sending rate is continu-
ous, we treat it as a fixed factor (1, 10, 50, 95 and 100 Mbps) as our study
does not focus on other rate values due to space constraints.

Threads One of Iperf’s features is its use of threads (optional, but enabled
by default) to report the measurements out of the main high-speed traffic
generation loop. In the context of our study, this could hide performance
impact introduced by the instrumentation. We therefore considered this
factor with two treatments, threads and nothreads.

Transport protocol Vanilla Iperf supports both TCP and UDP.

Dependent Variables This experiment focuses on three dependent vari-
ables which we measure to characterise the potential influence of the OML
instrumentation.

Actual sending rate Iperf’s real sending rate as computed from tcpdump
traces at the sender, RSnd

t .

Accuracy of the throughput report The difference between the through-
put reported by Iperf and the one measured by tcpdump at the receiver.
For a given sample, RRcv

Diff = |RRcv
t −RSnd

i |.

Accuracy of the jitter report Similarly, the difference between the jitter
reported by Iperf and the one computed from tcpdump at the receiver,
JDiff = |Jt − Ji|, where Jt is computed from tcpdump traces as per (1) at
the last packet of the period of each sample Ji.

Experiment Design Our final design is shown in Table 3. In this design, we
only use UDP as the transport protocol, as it is unclear what proportion of the
effect on the dependent variables would be due to the OML instrumentation
or the TCP congestion control mechanisms. Also, we decided not to consider
the required sending rate as a direct factor, but rather run separate trials at
each rate and consider their grouped results separately. Indeed, as the sending
rate is one of our dependent variables, it is obvious that changing its set point
will have an impact on this observed variable. Another approach would have
been to normalise the measured rates with respect to this set point, but the
first experiments showed a clear effect which may have belittled other factors
of more interest to us.

In each trial, the measurement applications run for 300 s. For each sampling
period of 0.5 s, the measured or computed dependent variables are reported.
As we only focus on UDP traffic, there is no transient adaptation period as is
usually the case with TCP’s slow-start. We however ignore the first and last
sampling period of each trial as their boundaries do not match the application’s

14 NICTA Technical Report TR-4879

starting/stopping times, thus resulting in incomplete data on the observed
variables within that period.

In an earlier pilot study with a vanilla Iperf, we did not find any statistical
difference between subsequent trials of the same experiment. We therefore
assume that having 598 samples from one trial is equivalent to having one
sample from 598 trials, thus ensuring suitable replication.

2.3.2 Packet Capture

To evaluate the effect of OML instrumentation on packet capturing, we use
a similar setup as above, but with an experiment design involving only two
dependent variables. In this case, our experiment’s null hypothesis is that
the OML instrumentation has no significant impact on the accuracy of packet
capturing in terms of the number of observed packets and their timestamps.

Iperf is used to generate traffic at various rates between the two nodes.
On each side, a plain tcpdump is used as a reference (t) to collect packet
identifiers (from the IP header) and timestamps from the generated traffic.
In addition on each side, another packet capture application is used as an
alternative (a) to measure the same variables. This alternative can either be
our OML-instrumented oml2 trace application or another tcpdump instance.

Experimental Factors We consider two fixed factors in this experiment.
The first one is the sending rate, with the same treatments as before: 1, 10,
50, 95 and 100 Mbps. The second one is the use of the OML-instrumented
alternative application, or not. This corresponds to the two treatments trace
(when an OML-instrumented application is used), and notrace.

Dependent Variables This experiment focuses on two dependent variables.

Accuracy of packet report Missing packet reports
may introduce a bias in the observations of a given research study. This
may happen e.g., when the control network is saturated with large num-
ber of reports, resulting in retransmissions and losses of samples. Thus
for each trial, we count the number of packets sent Nsent based on the
identifier from t, and the number lSa of packets not captured by a on side
S, as identified by gaps in the IP sequence numbers; we then compute the
loss ratio LS

a = lSa /Nsent.

Accuracy of timestamp The difference in the reported timestamps between
t and a on either node, T S

Diff = |T S
t − T S

i |.

Experiment Design The timestamp precision T S
Diff can be estimated for

each packets in a trial. We therefore have access to many more samples of

Mehani et al. Characterisation of the Effect of a Measurement Library. 15

that variable than in the previous experiment (e.g. of the order of 1 × 107 at
50 Mbps). In contrast, the number of unreported packets, NLoss, is a single
aggregate value for each trial. We therefore run 25 trials of this experiment to
have sufficient replication and an acceptable number of samples of NLoss.

2.3.3 System Resources

To evaluate the impact of OML instrumentation on system resources, for each
of the treatment groups in the above experiments we also run the oml2 nmetrics
application to monitor resource usage such as non-idle CPU time CS and used
memory MS. In this context, our null hypothesis is that the OML instrumen-
tation has no significant impact on the CPU and memory usage of the system
running it.

Dependent Variables The following additional two variables are observed
for each previously described experiments. We remove the trend displayed by
both CS and MS by differentiating subsequent samples for each time interval
[T − 1, T].

Differentiated CPU time δCS = CS
T − CS

T−1 and,

Differentiated memory usage δMS = MS
T −MS

T−1.

Experiment Design The experimental factors in this last experiment are
the same as the ones for the previous experiments. We run oml2 nmetrics in
each treatment groups. As it is an instrumented tool itself, we assumed it in-
troduces a uniform bias to the system load for each trial. We therefore ensure
that no further trend biases our dependent variables by starting oml2 nmetrics
first to let it measure the idle system before actually starting the other instru-
mented tools. This doubles the previously mentioned trial duration. Thus
with a sampling period of 5 s, we collect a total of 120 samples per node, but
only the last 60 are representative of the impact of the measurement tools.

2.3.4 Technical Details of the Experiments

The experiments described before have been conducted on an OMF-enabled
testbed. This allows us to provide systematic experiment descriptions suitable
for peer-review and reproducibility.11

The experimental nodes Snd and Rcv are VIA MB770, 1 GHz fan-less CPU
with 1 GB of RAM with two 100 Mbps Ethernet cards and two wireless in-
terfaces. The measurement server o is a 6-core AMD Phenom II X6 1055T
Processor with 12 GB of RAM, and is connected to the experiment nodes on

11All experiments and analysis scripts used for this paper, as well as our datasets, are
available at http://norbit.npc.nicta.com.au/portal/projects/omlperf.

http://norbit.npc.nicta.com.au/portal/projects/omlperf

16 NICTA Technical Report TR-4879

a 1 Gbps internet LAN. The experiment nodes run Ubuntu Linux with kernel
2.6.35-25-generic #44-Ubuntu SMP.

3 Results

This section presents the results of the analyses which we performed on the
collected experimental data.

Prior to analysing the data, we first assessed the precision of our mea-
surements by computing the relative standard error (RSE) of all measured
variables within a trial for each treatment groups of the previously described
experiments. The minimum and maximum RSE in our datasets are 8×10−6 %
and 0.17 %. Thus our collected set of data has a sufficient precision (< 5 %)
to be used in further scientific analyses.

We now consider the dependent variables introduced in Section 2.3 and
attempt to disprove our null hypotheses by identifying significant variations
between each treatment groups in our experimental factors. To this end, we
perform analyses of variance (ANOVA) on the dependant variables. We choose
the significance level α = 0.05 to have 95 % confidence when finding significant
differences.12 We note that some of the assumptions of the ANOVA are not
always met by our datasets. We address these problems as follows.

Independence of samples As the samples of each variables for one trial
come from a time series, they are clearly not independent, which is confirmed
by Turning points tests [14]. We therefore make our data iid by sampling it
randomly with replacement as suggested in [13].

Homoskedasticity In some cases, Breusch-Pagan tests show that the vari-
ance of our samples differs significantly between treatment groups. Studies
have however showed that the ANOVA is robust to deviations from this as-
sumption at the price of a small reduction of the confidence 1 − α and an
increase of the power of the test β [4,5]. Moreover, we note that these studies
focused on ratio of variances as low as 1:2. Even in our extreme cases, com-
puting the ratio of the variances reveals that the heteroskedasticity is much
more modest than the cases studied in [4, 5]. We therefore conclude that our
performed ANOVAs gave us valid results even with this caveat on the confi-
dence.

Normality This is the assumption from which our data deviated the most,
both in terms of skewness and kurtosis (flatness). We characterised this devi-

12If a factor is found to have a significant impact, the probability of it being a false positive
(Type I error) is < 5%.

Mehani et al. Characterisation of the Effect of a Measurement Library. 17

ation with a Shapiro-Wilk test for each treatment group and proceeded with
an ANOVA if the deviation was not found to be significant. In case the devi-
ation was significant, we used a non-parametric version of the ANOVA which
removes the assumption on the source distribution of the data by creating
an empirical null distribution through permutation of the samples throughout
treatments [2].

3.1 Application Performance

We performed two-way ANOVAs with interactions for each of the variables
RSnd

t , RRcv
Diff and JDiff at each of the studied set rates. However, we judged the

results for 100 Mbps invalid as the sender was rate-limited by its local network
interface in all treatment groups. Characteristic results for other rates are
presented below.

3.1.1 Actual Sending Rate

The results of the ANOVA for Iperf’s sending rate as measured by an un-
instrumented tcpdump, RSnd

t , at rates 1, 50 and 95 Mbps are shown in Table 4.
The results of the analysis for set rate 10 are similar to those for 50.

For rates 10 Mbps and higher, there are statistically significant differences
in Iperf’s sending rates, which are introduced by changes in both the use of
threads and OML instrumentation, as well as the interaction of those two
factors. When significant, this interaction has to be studied first, which we
do in Figure 4 for case 95 Mbps. This figure shows the so-called graph of
means, with each treatment of the oml factor on the x-axis and a connecting
line linking means for the same treatment of the thread factor. It shows an
interaction between the threads and oml factors. For the threads treatment,
the oml factor does not appear to have an impact, while its oml-o treatment
affects RSnd

t in the nothreads treatment.
The Tukey Honest Significant Differences test allows us to quantify the

deviations observed in Figure 4. We present the relevant results allowing to
characterise the previous figure in Table 6. For legibility’s sake, we only show
the mean differences and the p-values. We however include all the differences
between interactions which were found to be significant.

Table 6 further indicates that, contrary to our expectations, the version
integrating OML performs better than the vanilla version. Indeed, with a set
rate of 95 Mbps, an unthreaded OML-instrumented Iperf was able, in the same
conditions, to send an average of about 130 kBps (' 1 Mbps) more than the
vanilla version reporting to a CSV file, which is the same as the threaded
version. We found similar significant effects, though of smaller amplitude, at
rates 10 Mbps and above.

18 NICTA Technical Report TR-4879

Table 4: Two-way PERMANOVAs with interactions on the actual sending
rate of Iperf, RSnd

t

d.f. SS MS F p Signif.

1 Mbps

oml 3 2.00× 106 6.65× 105 1.01 0.394 –
threads 1 4.62× 105 4.62× 105 0.70 0.418 –
oml:threads 3 4.89× 105 1.63× 105 0.25 0.864 –
Residuals 3192 2.11× 109 6.61× 105

Total 3199 2.11× 109

50 Mbps

oml 3 3.55× 1011 1.18× 1011 22.70 0.001 ? ? ?
threads 1 2.33× 1011 2.34× 1011 44.76 0.001 ? ? ?
oml:threads 3 3.55× 1011 1.18× 1011 22.74 0.001 ? ? ?
Residuals 3192 1.66× 1013 5.21× 109

Total 3199 1.76× 1013

95 Mbps

oml 3 6.29× 1011 2.10× 1011 8.60 0.001 ? ? ?
threads 1 9.03× 1011 9.03× 1011 37.03 0.001 ? ? ?
oml:threads 3 3.43× 1011 1.14× 1011 4.68 0.003 ??
Residuals 3192 7.79× 1013 2.44× 1010

Total 3199 7.98× 1013

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

3.1.2 Accuracy of the Throughput Report

Next, we assess the variations of RRcv
Diff between the treatment groups, as an

evaluation of the impact of the instrumentation on the accuracy of Iperf’s
report. Table 5 presents the corresponding ANOVA results.

At 1 and 50 Mbps, no statistically significant difference seems to be due to
OML. At the latter rate, threads are the only source of deviation. At 95 Mbps,
both factors, as well as their interaction, are found to have a significant effect.
However, there is a discrepancy in the sum of squares for factor oml at this
rate.

Further investigation of the data revealed that some packet reports in the
advanced mode (oml-O treatment) are lost, thus introducing a bias in report
accuracy similar to that mentioned in Section 2.3.2. This leads to underesti-
mating (by 3–4 %) the throughput for that case when computing it a posteriori
based on these reports. Because of the heavy bias introduced by this treat-

Mehani et al. Characterisation of the Effect of a Measurement Library. 19

Table 5: Two-way PERMANOVAs with interactions difference RRcv
Diff between

the actual received rate and Iperf’s report.

d.f. SS MS F p Signif.

1 Mbps

oml 3 3.66× 106 1.22× 106 0.44 0.714 –
threads 1 9.62× 106 9.62× 106 3.47 0.061 –
oml:threads 3 3.26× 105 1.09× 105 0.04 0.990 –
Residuals 3192 8.85× 109 2.77× 106

Total 3199 8.87× 109

50 Mbps

oml 3 5.41× 109 1.80× 109 1.39 0.230 –
threads 1 1.42× 1010 1.42× 1010 10.96 0.001 ? ? ?
oml:threads 3 6.05× 109 2.02× 109 1.56 0.191 –
Residuals 3192 4.14× 1012 1.30× 109

Total 3199 4.16× 1012

95 Mbps

oml 3 7.81× 1015 2.60× 1015 83300.57 0.001 ? ? ?
threads 1 3.97× 1012 3.97× 1012 127.03 0.001 ? ? ?
oml:threads 3 8.09× 1012 2.70× 1012 86.35 0.001 ? ? ?
Residuals 3192 9.97× 1013 3.12× 1010

Total 3199 7.92× 1015

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

ment, particularly on the homoskedasticity of the data, it is impossible to draw
any conclusion from the analysis of this case.

To shed some light on the causes of these losses, we first verified that the
problem did not arise because of a saturation of the control link. We found
that, even at high rates (95 and 100 Mbps), the reporting generated a steady
3–4 Mbps, which is well below the 100 Mbps limit of the control network and
the interfaces of the experiment nodes.

We also performed another ANOVA for this case, ignoring treatment oml-
O. It showed no statistically significant difference (p > 0.05) between the other
treatments of the oml factor, including OML legacy reporting. We then ran a
modified oml-O trial where a summing filter was used at a 0.5 s interval, thus
generating the same amount of reports to the server as in the oml-o treat-
ment. An analysis of the data consisting of the previous set, with the reports
from oml-O replaced by those from the newly introduced filtered trial suggests

20 NICTA Technical Report TR-4879

11
90
00
00

12
00
00
00

OML Factor

R
TS
nd

 m
ea

ns
 [B

ps
]

11
90
00
00

12
00
00
00

nooml-c oml-c oml-o oml-O

Thread Factor
threads
nothreads

Figure 4: Graph of means for the interaction between experimental factors on
RSnd

t at 95 Mbps. Legacy OML reporting allows unthreaded Iperf to achieve
a throughput with no significant difference from the threaded version (see
Table 6).

that no significant difference can be observed when using interval-based filters.
However, as both approaches imply modifications of the experiment design,
they cannot be rightly compared to the rest of the results presented here. We
keep this as future work for the design of confirmatory experiments.

Based only on the remaining valid results we collected, we found no statis-
tically significant difference in the accuracy of Iperf’s throughput which was
due to OML instrumentation or reporting. However, although no significant
interaction effect was found at 50 Mbps, we still include the graph of means
for RRcv

Diff in Figure 5. This graph shows a trend13 which we find interestingly
similar to that of Figure 4, thus suggesting that a similar significant interaction
of factors may appear at 95 Mbps.

3.1.3 Accuracy of the Jitter Report

We finally attempt to find differences in JDiff in a similar fashion. Due to the
large amount of memory required by our implementation of the a posteriori
jitter computation based on packet dumps, we could only study the cases in

13We do not refer to the apparent “trend” of the lines, which is a meaningless artifact
of the graphical representation of categorical data. Rather, we mean the similarity of the
behaviours observed for the same combination of factors.

Mehani et al. Characterisation of the Effect of a Measurement Library. 21

Table 6: Tukey Honest Significant Differences for oml:threads interactions with
significant differences in the sending rate at 95 Mbps. Only differences relevant
to Figure 4 and all those found to be significant with 95% confidence are shown.

oml:threads interaction diff [kBps] p adj Signif.

oml-c:nothreads–nooml-c:nothreads −20.77 0.98 –
oml-o:nothreads–nooml-c:nothreads 107.41 0.00 ? ? ?
nooml-c:threads–nooml-c:nothreads 88.27 0.00 ? ? ?

oml-c:threads–nooml-c:nothreads 91.85 0.00 ? ? ?
oml-o:threads–nooml-c:nothreads 108.71 0.00 ? ? ?
oml-O:threads–nooml-c:nothreads 98.91 0.00 ? ? ?
oml-o:nothreads–oml-c:nothreads 128.17 0.00 ? ? ?
nooml-c:threads–oml-c:nothreads 109.04 0.00 ? ? ?

oml-c:threads–oml-c:nothreads 112.62 0.00 ? ? ?
oml-o:threads–oml-c:nothreads 129.47 0.00 ? ? ?
oml-O:threads–oml-c:nothreads 119.67 0.00 ? ? ?

oml-O:nothreads–oml-o:nothreads −75.13 0.02 ?
oml-o:threads–oml-o:nothreads 1.30 1.00 –
oml-o:threads–oml-O:nothreads 76.43 0.01 ??
oml-O:threads–oml-O:nothreads 66.64 0.05 ?

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

1–50 Mbps. Table 7 summarises our findings, and shows a significant difference
introduced by OML in the 10 Mbps (p < .01) and 50 Mbps (p < .001) cases.

We conducted Tukey HSD tests to evaluate this difference. They showed
that no statistically significant difference could be observed between vanilla
Iperf with CSV output and OML legacy reporting. However, a significant
increase in the jitter was observed in the case of the advanced OML reporting
at 50 Mbps, as illustrated by Figure 6. For the 10 Mbps case, the graph of
means (not reported here) suggests a similar but much smaller effect. This
effect size may be too modest to be detected with statistical significance by
our current tests. Tests with higher statistical power may be able to detect
such effect and will be considered in our future work.

3.2 Packet Capture

We performed a similar analysis on the relevant dependant variables of our
packet-capture experiment. Characteristic results are reported thereafter.

22 NICTA Technical Report TR-4879

34
00
0

40
00
0

OML Factor

R
D
iff
R
cv

 m
ea

ns
 [B

ps
]

34
00
0

40
00
0

nooml-c oml-c oml-o oml-O

Thread Factor
threads
nothreads

Figure 5: Graph of means for the interactions on Iperf’s RRcv
Diff at 50 Mbps. OML

reporting appears to increase the accuracy of the reports from the unthreaded
trials, bringing them up to that of the threaded ones.

0.
00

0.
10

OML Factor

J d
iffR
 m

ea
ns

 [m
s]

0.
00

0.
10

nooml-c oml-c oml-o oml-O

Thread Factor
threads
nothreads

Figure 6: Graph of means for the interactions of experimental factors on JDiff

at 50 Mbps. Iperf’s legacy OML reporting does not seem to introduce any
significant effect.

Mehani et al. Characterisation of the Effect of a Measurement Library. 23

Table 7: Two-way PERMANOVA with interactions on the difference JDiff

between the actual jitter and Iperf’s report.

d.f. SS MS F p Signif.

1 Mbps

oml 3 0.10 0.03 0.48 0.684 –
threads 1 0.00 0.00 0.05 0.833 –
oml:threads 3 0.25 0.08 1.22 0.322 –
Residuals 4784 322.15 0.07
Total 4791 322.50

10 Mbps

oml 3 0.65 0.22 4.24 0.006 ??
threads 1 0.11 0.11 2.08 0.149 –
oml:threads 3 0.36 0.12 2.35 0.075 –
Residuals 4561 233.55 0.05
Total 4568 234.67

50 Mbps

oml 3 1.85 0.62 51.18 0.001 ? ? ?
threads 1 0.63 0.63 52.63 0.001 ? ? ?
oml:threads 3 2.12 0.71 58.72 0.001 ? ? ?
Residuals 4784 57.67 0.01
Total 4791 62.28

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

3.2.1 Accuracy of Reports

We performed a two-way permutation ANOVA on the loss ratio LSnd
a for our

treatment groups in the packet capture experiment. Table 8 presents a sum-
mary of this analysis. Though the trace factor seems to have the most statisti-
cally significant impact, its interaction with the rate factor needs to be studied
first. The related graph of means in Figure 7 shows that the interaction of the
trace factor and high rates has the largest effects, increasing the packet loss
ratio.

In Table 9, we reproduce those results of the Tukey HSD test which are
relevant to the interpretation of Figure 7. It shows that, at low rates (1–
50 Mbps), the difference is not statistically significant but becomes significant
for the 95 Mbps treatment. We however note that, regardless of significance,
the difference is always positive, which means that our OML-instrumented
libtrace tool tends to miss more packets than tcpdump.

24 NICTA Technical Report TR-4879

Table 8: Two-way PERMANOVA with interactions on the loss ratio Lratio.

d.f. SS MS F p Signif.

trace 1 0.07 0.07 9.24 0.001 ? ? ?
rate 4 0.08 0.02 2.56 0.027 ?
trace:rate 4 0.08 0.02 2.65 0.021 ?
Residuals 200 1.48 0.01
Total 209 1.70

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

0 20 40 60 80 100

0
2

4
6

8
10

Traffic rate [Mbps]

Lo
ss

 r
at

io
 [%

]

Trace Factor

notrace
trace

Figure 7: Graph of means for the interaction of factors trace and rate on the
loss ratio LSnd

a .

3.2.2 Timestamp Accuracy and Precision

As mentioned in section 2.2.2, the timestamps for both tools come directly
from the kernel capture. We found the accuracy for both the reference and the
alternative to always be equal (T S

Diff = 0).
It is worthwhile to note that, while both libraries can access and store

packet timestamp information with a microsecond resolution, we found in our
experiments that the libpcap trace files only had a millisecond resolution. We
therefore discarded the microsecond information from oml2 trace when com-
puting T S

Diff .

Mehani et al. Characterisation of the Effect of a Measurement Library. 25

Table 9: Tukey HSD for trace:rate interactions with significant differences in
the loss ratio LSnd

a . Only differences relevant to Figure 7 are shown.

trace:rate diff [%] p adj Signif.

trace:1-notrace:1 9.08e-04 1.00 –
trace:10-notrace:10 0.46 1.00 –
trace:50-notrace:50 1.26 1.00 –
trace:95-notrace:95 9.87 0.02 ?

trace:100-notrace:100 6.89 0.26 –

Significance level: ? 0.05, ? ? 0.01, ? ? ? 0.001

3.3 System Resources

We analysed the system usage variables δCS and δMS in the same manner
as the other dependent variables, for both experiments on Iperf performance
and packet capture. Some of the resulting ANOVAs showed significant effects.
However, further investigation showed that in these cases the affected node
had been doing memory maintenance tasks, thus confounding our results.

This led us to conclude that, overall, no statistically significant deviation
could be found, either in terms of CPU or memory usage, between the different
treatment groups involving OML-enabled tools or not.

4 Discussion

Based on the interpretation of the results just presented, we now discuss their
implications with respect to the performance of OML and the studied applica-
tions. We then provide recommendations for the use of OML for the developers
and experimenters.

4.1 On the Accuracy of Iperf

Our study of an OML-instrumented Iperf gave us insight, both on the influence
of OML and Iperf itself, which we present here.

4.1.1 Vanilla Version

As a side effect of our OML impact study, we have performed what can be
considered one of the first deep investigation of Iperf performance and report-
ing accuracy. This performance analysis of Iperf brought some insight on its
potential impact on networking research. In particular, we unexpectedly found
that the Iperf reporting function can impact the accuracy and performance of
the traffic generation up to 2% in our worst case scenario. This difference can

26 NICTA Technical Report TR-4879

be explained by the reporting functions, which are run synchronously in the
non-threaded version of vanilla Iperf.

This discovery raises several questions about previously published Iperf-
based measurements. Indeed, although most distributions provide an Iperf
built with threads support, some platforms—mostly embedded—do not sup-
port threads (e.g. Windows CE Pocket PCs).

4.1.2 OML-Instrumented Flavour

Nevertheless, the analysis of the impact of legacy OML reporting on un-
threaded Iperf suggests that, even if the reporting is done within the main
thread, the use of OML instead of the usual CSV file-writer allows to reach
similar performances as the threaded builds. It is important to note that the
OML reporting did not introduce any threads in this case.

Our results also show that reporting every packet information for Iperf
(advanced mode) could impact the overall performance of both threaded and
unthreaded versions of Iperf. Early results from confirmatory experiments
however suggest that the use of OML filters before reporting measurements on
the network can mitigate this issue. This result is consistent with that of the
packet capturing tool as discussed next.

4.2 On Packet Capture With libtrace

Our results for the packet capture software show that there is a significant
difference between our OML-instrumented wrapper for libtrace and tcpdump
at high rates. In our worst case scenario the OML-based tool would lose
an average of about 10 % more packets at 95 Mbps. This behaviour may be
explained by two main reasons.

First, the OML architecture may contain a bottleneck which would cause
measurements to be lost when generated at too high a rate. Indeed, as illus-
trated in Figure 8, when a sample is injected by the client, the data stream
is transferred reliably to the OML server over TCP. On the server side, the
samples are inserted into an SQLite database. The server’s default parame-
ter for OML is to perform one writing transaction once every second. In this
study, two clients were reporting two MPs (IP and TCP headers) per packet.
This resulted in four injections on the server side. At high rates, too many
packets may therefore have been reported for the OML server to be able to
empty the TCP buffers in time. In those cases, the TCP receiver would start
sending zero-window acknowledgements therefore blocking the TCP sender,
and finally the injection function. As our basic capturing packet application
was not threaded, blocking the measurement injection in turns caused packet
capture buffers to be overwritten before being read by the application. The
same hypothesis can be proposed to explain the relatively poorer performance

Mehani et al. Characterisation of the Effect of a Measurement Library. 27

IP

MP

Filters

OML
Serv

er

SQL
Data
base

TCP

TCP

MP

TCP
rcv

FULLzero
window

Full
Writing
Blocked

e1

Buffer/
Memory

overwritten
=>

Data
Discarded

Figure 8: Data path from injection to database. When the transaction takes
place on the server side the TCP receiver buffer is filled. As a result a zero
window is sent to the client, which results at the other end in data discarding
in the application.

of the oml-O treatment of our Iperf experiment.
Also, in oml2 trace we do not dump the binary packet directly into a file as

tcpdump does, but rather access specific fields of the relevant headers. This
process is done for every packet prior to the injection into the measurement
stream. We therefore suspect our application may be slowed down even before
the OML process is started. In order to have a fairer comparison, it would be
interesting to conduct a complementary experiment. The notrace treatment
would either be tcpdump operated in a verbose mode and dumping out the
parsed packets in a file, or oml2 trace configured to directly dump the samples
from the captured packets to a local storage.

4.3 On the Resource Usage of OML

For all experiments, the OML instrumentation has not been found to induce
any significant impact on the system’s CPU and memory usage. These results
were expected for the experiments at low traffic rates but not for the ones at
higher rates. In particular we anticipated that the advanced OML reporting
mode of Iperf would show an increased system load, but our results did not
identify such impact. Overall, our results suggest that the resource footprint
of OML is not significant and can be considered as negligible in most cases.

4.4 Recommendations

4.4.1 OML Instrumentation and Measurements

We claim that OML is a good candidate for the instrumentation of large scale
distributed systems. Indeed, aside from its design goal of centralising measure-

28 NICTA Technical Report TR-4879

ment collection from multiple nodes and storing them in a unified format, our
analyses suggest that, in most cases, this library does not have a significant
impact on the instrumented applications or the host system. It also simplifies
the development of active measurement applications by removing the need for
a complex threaded architecture. Nevertheless some considerations have to be
taken into account when designing such large scale distributed measurements.

An application developer, be they in charge of writing a new tool or just in-
strumenting an already existing system, must be careful in establishing which
metrics should be reported together in one MP. It is a trade-off between pro-
viding flexibility to the experimenter and limiting the number of MPs—and,
ultimately, generated samples—that need be reported to the server. For ex-
ample, it may be relevant to group fields for which new measurements always
arrive at the same time (such as various metrics for a packet). However, only
some aspects may ultimately be of interest to the experimenter (e.g. through-
put but not jitter). Thus MPs with a lot of fields may only result in wasted
capacity both on the control network and the database server.

Then, an experimenter would have to be careful with respect to the number
of MPs selected to be reported to a single OML server, and make sure it
does not receive more than a few reports per millisecond. Several solutions
exist to do so. First, the experimenter should take advantage of the filtering
capabilities of OML to pre-process data on the client side and reduce the
number of samples. This solution however requires them to have an a priori
idea of which metrics may be relevant to their study. It might therefore not
be suitable in the exploratory phase of a study.

Another solution is to use an OML proxy server [23]. This should allow
to break the lock-up illustrated in Figure 8 as the proxy would decouple the
client from the server using its own buffers. This is likely to come at a higher
memory price for the node running the proxy.

A third possibility is to multiplex several MSs to dedicated OML servers.
For example in the case of oml2 trace this could mean instantiating four OML
servers, each corresponding to an MP of a specific node.

4.4.2 Iperf for Capacity Probing

As the results show in this study, it is important to understand all the different
components of a measurement application. In particular as illustrated by the
case of the non-threaded version of Iperf, it is important to be aware of the
impact of the reporting procedure on the measurements themselves.

Based on our findings, we do not recommend the use of unthreaded Iperf
builds in studies relying on the absolute accuracy of Iperf measurements. In-
deed this lack of thread support may bias the accuracy of the reported through-
puts and jitters. However if we assume a uniformly introduced bias, these mea-

Mehani et al. Characterisation of the Effect of a Measurement Library. 29

surements may be used in studies using relative comparisons, provided that
the data was collected from an homogeneous setup of solely unthreaded Iperf
builds.

4.5 Limitations and Future Directions

The main limitation found during this study is the potential loss of mea-
surements at high reporting rates. We identified several solutions to mitigate
this issue from an experimenter’s perspective: instantiating several dedicated
servers, preprocessing the samples on the nodes using filters or deploying proxy
servers to act as additional buffers.

Based on the aforementioned observations and limitations, several software
improvements can be considered to enhance the behaviour of OML. The first
one would be to resolve the injection-to-database lock-up problem by separat-
ing the measurement injection and the transmission to the server. This could
be accomplished by dedicating one thread to the TCP transmission.

Another improvement would be to have feedback updates from the server to
the client. They would inform the client of the size of the next database trans-
action in order to either slow down the sending rate, or change the reporting
schema by introducing on-the-fly filters.

Finally, we also plan to investigate filter- and proxy-based solutions further
in terms of system impact and achievable sample rate.

5 Conclusion

We have conducted an in-depth performance evaluation of the OML 2.5.0.
With a reasonable sample rate, we could not find any significant negative
impact of such an instrumentation. Moreover, we identified statistically signif-
icant positive effects in some cases where the instrumented application did not
use threads. Indeed, OML removes the complexity of reporting from an ap-
plication’s main purpose, therefore making it an interesting and non-intrusive
tool to collect metrics from applications which main purpose is not measure-
ment. However, our results indicate that a single OML server cannot currently
scale to sample rates of the order of more than a few per millisecond, though
preliminary experiments suggest that this issue can be avoided by the use of
OML filters.

Incidentally to this evaluation, we could also identify a shortcoming in the
performance of Iperf 2. We found that disabling threads on the vanilla version
has a significant impact on the accuracy of the generated rate and measure-
ments. This raises concerns about the validity of Iperf-based studies comparing
platforms which do not support threads with others which do.

Finally, we presented a set of recommendations for a user to instrument their

30 NICTA Technical Report TR-4879

software with OML and configure the monitoring so this would not impact the
performance of the host application. We were also able to narrow down the
bottlenecks present in OML, and identify future steps that need to be taken
in order to improve the instrumentation library.

Mehani et al. Characterisation of the Effect of a Measurement Library. 31

References

[1] S. Alcock, P. Lorier, and R. Nelson. Libtrace: A trace capture and pro-
cessing library. Technical report, University of Waikato, Hamilton, New
Zealand, May 2010.

[2] M. J. Anderson. A new method for non-parametric multivariate analysis
of variance. Austral Ecology, 26(1):32–46, Feb. 2001.

[3] C. Demichelis and P. Chimento. IP packet delay variation metric for IP
performance metrics (IPPM). RFC 3393, RFC Editor, Fremont, CA, USA,
Nov. 2002.

[4] G. V. Glass, P. D. Peckham, and J. R. Sanders. Consequences of failure
to meet assumptions underlying the fixed effects analyses of variance and
covariance. Review of Educational Research, 42(3), 1972.

[5] M. R. Harwell, E. N. Rubinstein, W. S. Hayes, and C. C. Olds. Sum-
marizing Monte Carlo results in methodological research: The one- and
two-factor fixed effects ANOVA cases. Journal of Educational and Behav-
ioral Statistics, 17(4):315–339, Dec. 1992.

[6] M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Maintaining account-
ability for network services. ACM SIGOPS Operating Systems Review,
40(1):89–94, Jan. 2006.

[7] F. Hui and P. Mohapatra. Experimental characterization of multi-hop
communications in vehicular ad hoc network. In D. B. Johnson and
R. Sengupta, editors, VANET 2005, 2nd ACM international workshop
on Vehicular ad hoc networks, pages 85–86, New York, NY, USA, Sept.
2005. ACM.

[8] G. Iannaccone. CoMo: An open infrastructure for network monitoring —
research agenda. Technical report, Intel Research, Cambridge, UK, Feb.
2005.

[9] G. Insolvibile. The Linux socket filter: Sniffing bytes over the network.
Linux Journal, 86, Mar. 2001.

[10] G. Jourjon, T. Rakotoarivelo, and M. Ott. A portal to support rigorous
experimental methodology in networking research. In H. Li, T. Korakis,
P. Tran-Gia, and H.-S. Park, editors, TridentCom 2011, 7th International
ICST Conference on Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities, Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering, Heidelberg, Germany, Apr. 2011. ICST, Springer-Verlag Berlin.

32 NICTA Technical Report TR-4879

[11] S. S. Kolahi, S. Narayan, D. Nguyen, and Y. Sunarto. Performance mon-
itoring of various network traffic generators. In R. Cant, editor, UKSim
2011, 13th International Conference on Computer Modelling and Simula-
tion, pages 501–506, Los Alamitos, CA, USA, Mar. 2011. IEEE Computer
Society.

[12] Y. Koucheryavy, D. Moltchanov, and J. Harju. Performance evaluation
of live video streaming service in 802.11b WLAN environment under dif-
ferent load conditions. In G. Ventre and R. Canonico, editors, Interactive
Multimedia on Next Generation Networks, volume 2899 of Lecture Notes
in Computer Science, pages 30–41. Springer-Verlag Berlin, Heidelberg,
Germany, Nov. 2003.

[13] J.-Y. Le Boudec. Performance Evaluation of Computer and Communica-
tion Systems. EPFL Press, Lausanne, Switzerland, Nov. 2010.

[14] S. Morley and M. Adams. Some simple statistical tests for exploring single-
case time-series data. British Journal of Clinical Psychology, 28(1):1–18,
Feb. 1989.

[15] S. Narayan, K. Brooking, and S. de Vere. Network performance analysis
of VPN protocols: An empirical comparison on different operating sys-
tems. In X. M. Gu, J. P. Liu, V. E. Muhin, W. H. Peng, M. S. Qaiser,
R. M. Shboul, Z. H. Wang, Y. W. Wu, Y. Zheng, and J. Zhou, editors,
NSWCTC 2009, International Conference on Networks Security, Wireless
Communications and Trusted Computing, pages 645–648, Los Alamitos,
CA, USA, Apr. 2009. IEEE Computer Society.

[16] K. Park and V. S. Pai. CoMon: A mostly-scalable monitoring system
for PlanetLab. ACM SIGOPS Operating Systems Review, 40:65–74, Jan.
2006.

[17] P. Primet, R. Harakaly, and F. Bonnassieux. Experiments of network
throughput measurement and forecasting using the network weather. In
H. E. Bal, editor, CCGrid 2002, 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, page 413, Piscataway, NJ, USA,
May 2002. IEEE Computer Society.

[18] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar. OMF: A control
and management framework for networking nestbeds. SIGOPS Operating
Systems Review, 43(4):54–59, Jan. 2010.

[19] F. Schneider, J. Wallerich, and A. Feldmann. Packet capture in 10-
gigabit ethernet environments using contemporary commodity hardware.
In S. Uhlig, K. Papagiannaki, and O. Bonaventure, editors, PAM 2007,
8th Internatinal Conference on Passive and Active Network Measurement,

Mehani et al. Characterisation of the Effect of a Measurement Library. 33

volume 4427 of Lecture Notes in Computer Science, pages 207–217, Hei-
delberg, Germany, Apr. 2007. Springer-Verlag Berlin.

[20] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications. RFC 1889, RFC Editor,
Fremont, CA, USA, Jan. 1996.

[21] A. Tirumala, L. Cottrell, and T. Dunigan. Measuring end-to-end band-
width with Iperf using Web100. In PAM 2003, Passive and Active Moni-
toring Workshop, number SLAC-PUB-9733, Apr. 2003.

[22] M. Tsukada, J. Santa, O. Mehani, Y. Khaled, and T. Ernst. Design
and experimental evaluation of a vehicular network based on NEMO and
MANET. EURASIP Journal on Advances in Signal Processing, 2010:1–
18, Sept. 2010.

[23] J. White, G. Jourjon, T. Rakotoarivelo, and M. Ott. Measurement ar-
chitectures for network experiments with disconnected mobile nodes. In
A. Gavras, N. Huu Thanh, and J. Chase, editors, TridentCom 2010, 6th
International ICST Conference on Testbeds and Research Infrastructures
for the Development of Networks & Communities, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering, Heidelberg, Germany, May 2010. ICST, Springer-Verlag
Berlin.

	Introduction
	Method
	OML
	Instrumented Tools
	Network Probing: Iperf
	Packet Capture: tcpdump and libtrace
	Resource Usage: Sigar

	Experiments
	Application Performance
	Packet Capture
	System Resources
	Technical Details of the Experiments

	Results
	Application Performance
	Actual Sending Rate
	Accuracy of the Throughput Report
	Accuracy of the Jitter Report

	Packet Capture
	Accuracy of Reports
	Timestamp Accuracy and Precision

	System Resources

	Discussion
	On the Accuracy of Iperf
	Vanilla Version
	OML-Instrumented Flavour

	On Packet Capture With libtrace
	On the Resource Usage of OML
	Recommendations
	OML Instrumentation and Measurements
	Iperf for Capacity Probing

	Limitations and Future Directions

	Conclusion

