
Mobile Multi-protocol HTTP Proxy

Yang Wang1,2

1 Nicta, Sydney. Eveleigh, NSW, Australia, first.last@nicta.com.au
2 Université de Technologie de Compiègne, France
?Nicta supervisor and corresponding contact: Olivier Mehani1

Published: 16 October 2012
Copyright c© 2012 NICTA

mailto:first.last@nicta.com.au

ii

Acknowledgements

I would like to express my gratitude to all those who helped me during this intern-
ship, especially my supervisor Olivier Mehani, Prashanthi Jayawardhane, Gillian
Adidi, and Ben Mason for their help in all the administration stuff, the directors of
NICTA who gave me this precious occasion, Valérie Texier and Véronique Cherfaoui
for their support from the University of Technology of Compiègne, and all colleagues
of NICTA with whom I passed a very nice period.

iii

iv

Abstract

Multimedia content is becoming the most prominent traffic over the Internet. How-
ever the transport of multimedia objects between mobile devises and web servers
is slowed down due to the use of the TCP protocol because its congestion control,
reliability, and in-order delivery take time when the loss of a few packets is not im-
portant. The development of an HTTP multi-protocol proxy is one of the reasonable
solutions to mitigate this problem.

This internship is focused on developing a light multi-protocol HTTP proxy
which supports different transport protocols such as Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), Stream Control Transmission Protocol
(SCTP) or Datagram Congestion Control Protocol (DCCP). At first, we present
how to make a simple transparent proxy using the TCP protocol. Then we explain
and extend the Polipo proxy, an Open-source software supporting IPv4 and IPv6,
to detect the type of data to transfer from the web server and to select the most
appropriate transport protocol. Last, we finish by assembling the previous works of
the development of the transparent proxy and the extension of Polipo to make our
multi-protocol HTTP proxy.

Environment tools:

• Programming language: C

• Operation system: Ubuntu 11.10 (Oneiric), Kernel Linux 3.0.0-12-generic

• Development tools: Gedit, Terminator

• Version control system: Git

• Compilation, debug & test tools: GCC, GDB, DDD, Mozilla Firefox

• Documentation tools: Kile, Dia, Meld, LibreOffice Draw, Microsoft Power
Point

Key words: HTTP, socket, proxy, transport protocol, HTML5, C,
mobile

v

Contents

Acknowledgements iii

Abstract v

Contents 1

1 Context and State of the Art 3
1.1 National ICT Australia . 3
1.2 Scalable and Adaptive Internet Solutions (SAIL) Project 4
1.3 State of the art . 4

1.3.1 Hypertext Transfer Protocol (HTTP) Protocol 4
1.3.2 TCP protocol . 8
1.3.3 UDP protocol . 8
1.3.4 Other transport protocols . 9
1.3.5 Proxy . 9

1.4 Objectives . 10

2 Development of a simple HTTP proxy 11
2.1 Proxy on the client side . 11

2.1.1 Socket creation . 11
2.1.2 Address preparation . 11
2.1.3 Connection to the server . 12
2.1.4 Sending/receiving data . 12
2.1.5 Close socket . 12

2.2 Proxy on the server side . 12
2.2.1 bind() function . 13
2.2.2 listen() function . 13
2.2.3 accept() function . 13

2.3 Infinite loop . 14

3 Extension of an open source proxy 17
3.1 Presentation of Polipo . 17

3.1.1 Context . 17
3.1.2 Particularity . 17
3.1.3 Installation . 18
3.1.4 Configuration . 19

3.2 Structure of Polipo . 19

1

2 NICTA Technical Report TR-6329

3.2.1 poll() function . 19
3.2.2 Architecture of Polipo . 19
3.2.3 Data structures . 20
3.2.4 Pipelining . 22

3.3 Extension of Polipo . 22
3.3.1 State of request . 22
3.3.2 Sending HEAD requests . 24
3.3.3 Reception of HEAD replies . 24

3.4 Results and conclusion . 25

4 Development of a multi-protocol proxy 27
4.1 MPPX on the server side . 27

4.1.1 Data structures . 27
4.1.2 Process of multi-protocol proxy (MPPX) 28

4.2 MPPX on the client side . 29
4.3 Result . 30
4.4 Usage of MPPX . 30

5 Conclusion 33

Bibliography 35

Acronyms 37

List of Figures 39

Chapter 1

Context and State of the Art

Introduction

With the growing popularity of HTML5, multimedia content is more and more used
on mobile devices. However, the use TCP to transport all content is not neccessarily
appropriate. In case where the loss of few packets might not be so important,
TCP retransmissions might introduce unwanted delay. On the other hand, many
transport protocols such as UDP, SCTP or DCCP are available for the transmission
of data. The objective of this internship is to develop a multi-protocol proxy able
to select the most appropriate transport protocol depending on the content type of
the object transferred over HTTP.

We begin by presenting the context of this internship at NICTA, the SAIL
project, and background information about the Internet communication protocols.
Then, we explain how we made a simple transparent proxy able to receive requests
from the client application, send them to the web server, receive the answers from
the web server, and transfer them to the client application. This step allows us to
understand the basic technologies behind an HTTP proxy. We then present an open
source proxy named Polipo and extend its functionality. We finish by taking the
simple proxy and the completed Polipo code to create a full multi-protocol proxy.

1.1 National ICT Australia

National ICT Australia Ltd (NICTA) 1 is Australia’s Information and Communica-
tions Technology research centre of Excellence. Established in 2002 by the Federal
Government as part of the Backing Australia’s Ability initiative, and funded by the
Australian Government through the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council under the ICT Cen-
tre of Excellence Program, it is also supported by the New South Wales, Queensland
and Victoria Governments, and many Australian universities.

There are more than 600 researchers and PhD students in the 5 laboratories
around the country. Aiming to pursue high-impact research excellence and to create
national benefit and wealth for Australia, their research is divided in 6 domains:

• Computer Vision

1http://www.nicta.com.au/

3

http://www.nicta.com.au/

4 NICTA Technical Report TR-6329

• Machine Learning

• Networks

• Optimization

• Software Systems

• Control and Signal Processing

This internship was done in the Networking Research Group. It was part of its
involvement with the SAIL project.

1.2 SAIL Project

Today’s Internet rests on a foundation of technologies, needs and visions that emerged
40 years ago. SAIL [11] is a project leading a consortium of 25 operators, vendors
and research institutions which aims to design technologies for the networks of the
future and develop techniques to transition from today’s networks to such future
concepts.

The research of SAIL is organized in four principal areas:

• Network of Information (NetInf)

• Cloud Networking (CloNe)

• Open Connectivity Services (OCons) [1, 9]

• Migration, Standardization, Business and Socio-Economics

As one of the 25 participants, NICTA is doing prototyping work for the Open
Connectivity Services and integration of research outcomes [4, 10].

1.3 State of the art

1.3.1 HTTP Protocol

The HTTP protocol [5] is an application layer protocol of the Open Systems Inter-
connection (OSI) model. It is the foundation for web transmission. HTTP works
following a client/server model. The client application submits a request message
to the server, and the server transfers the objects to the client. The most common
HTTP application is a web browser which prepares and sends HTTP requests when
an user visits a web site. The web server application, such as Apache,2 receives the
HTTP requests, and sends the required data back to the client application. Figure
1.1 shows the model of the HTTP communication.

Mobile Multi-protocol HTTP Proxy 5

Figure 1.1: HTTP communication. HTTP works following a client/server
model. The client sends requests, such as a GET request, to ask for a
ressource from server, and the server returns ressources with HTTP
headers..

1 GET http :// www.google.com.au/ HTTP /1.1

2 Host: www.google.com.au

3 User-Agent: Mozilla /5.0 (X11; Ubuntu; Linux i686; rv

:11.0) Gecko /20100101 Firefox /11.0

4 Accept: text/html ,application/xhtml+xml ,application/xml;q

=0.9

5 Accept-Language: en-us ,en;q=0.5

6 Accept-Encoding: gzip , deflate

7 Proxy-Connection: keep-alive

Figure 1.2: HTTP request. The first line contains the method, the URL, and
the protocole version. The following lines provide information about
the client, such as the browser or the supported language..

6 NICTA Technical Report TR-6329

HTTP Request

As figure 1.2 shows, the first line of an HTTP request is composed of three elements:
the HTTP method, the Uniform Resource Locator (URL), and the protocol version.

The usual HTTP methods are GET, HEAD, POST, PUT, and DELETE. The GET

method requests a complete HTTP response which is the combination of the HTTP
header, containing the information about the requested content, and the body of
the content, separated from the header by an empty line. The HEAD method re-
quests the server to only send the HTTP header. This method is useful for caching
proxies which have to check whether the local data has expired by parsing the
Last-Modified information. If the last-modified date is earlier than local data,
the proxy can send this data directly when a client requests, otherwise the proxy
forwards the GET request to the web server to update the data. When a client ap-
plication needs to send some information, it can use the PUT or POST methods to
the server. These two methods are very similar, the difference is that if the object
already exists on the server, PUT replaces the original data and POST lets the server
determine what to do with this data. The DELETE method allows the client to delete
data from the server, but this command is denied by almost all server configurations
for security reasons.

HTTP Response

As presented in figure 1.3, an HTTP response is composed of an HTTP header
and the body of content after an empty line. The first line of the HTTP response
header contains the version of the protocol and the status code. HTTP has different
versions, each version has its specification. The status code advises the state of
HTTP response. The 2xx class of status codes indicates that the client’s request
was successfully received, understood, and accepted. The 3xx class indicates that
the user-agent can select a preferred representation or redirect its request to that
location. The 4xx class indicates the client appears to have erred. The 5xx class
signifies there is an error of the web server’s side.

The other lines of HTTP response header respect the name: value format.
These lines comprise the information about the content in the body of the HTTP
response, such as the Cookie, the Content-Type or the Content-Length.

HTTP/1.1

The first documented version of HTTP protocol, HTTP/0.9, was published in 1991.3

Since then, the HTTP protocol has developed. The latest version is HTTP/1.1 [5].
Compared with HTTP/1.0 which has been most used in the last years, the new
version has a number of new features. They include:

Persistent connections The HTTP/1.0 protocol closes the connection after re-
ceiving an object, and creates a new connection for the next request to the
same server. By adding connection negotiation mechanisms, the connection
can Keep-Alive after the transmission of one document. This mechanism

2http://www.apache.org/
3http://www.w3.org/Protocols/HTTP/AsImplemented.html

http://www.apache.org/
http://www.w3.org/Protocols/HTTP/AsImplemented.html

Mobile Multi-protocol HTTP Proxy 7

1 HTTP /1.1 200 OK

2 Date: Sun, 26 Aug 2012 07:13:20 GMT

3 Expires: -1

4 Cache-Control: private, max-age =0

5 Content-Type: text/html; charset=UTF-8

6 Set-Cookie: PREF=ID=b49a8a136c8

7 Server: gws

8 Content-Length: 26997

9 X-XSS-Protection: 1; mode=block

10 X-Frame-Options: SAMEORIGIN

11

12 <!doctype html ><html itemscope="itemscope"

13 itemtype="http :// schema.org/WebPage"><head ><meta itemprop

="image"

14 content="/images/google_favicon_128.png"><title >Google </

title >

15

Figure 1.3: HTTP reply. An HTTP reply contains an HTTP header and the
content after an empty line. The HTTP header provides the protocol
version, status code and the status string in the first line, and
information about the server in the following lines, such as the time
of server, the type of content or the length of content..

8 NICTA Technical Report TR-6329

avoids connecting many times to the same server and retains the rate of the
Internet transmission.

Caching The caching mechanism exists in the HTTP/1.0 version. It was controlled
by time. The Expires value and the If-Modified-Since date are used for the
validity of a web page. In case of clock skew, the web client cannot correctly
verify the update from the web server. The new HTTP version added an Etag

header to identify objects. If the local Etag value equals the Etag value of the
HTTP header from server, the local data is assumed to be up-to-date and is
sent to the client.

Pipelining If both the client and web server support pipelining, the client can
make several HTTP requests without waiting for their responses. This tech-
nique decreases the number of Internet connections as well as benefit from the
transfer rate of previous transmission.

OPTIONS method The OPTIONS method allows to obtain information about the
capabilities of a server without actually requesting a resource. This method is
not currently supported by most web servers.

As HTTP uses TCP as transport protocol, we now take a look at this protocol.
It has some limitations in this context, which other protocols could alleviate, we
present them too.

1.3.2 TCP protocol

Transmission Control Protocol (TCP) [2] is a connection-oriented transport proto-
col. It is used by major web applications requiring reliable connection such as the
World Wide Web (WWW), file transfers or email.

The TCP communication is divided by 3 phases, the establishment of connection,
the transmission of data, and the termination of connection. Before sending data,
the system creates a TCP connection which stays alive until both sender and receiver
receives a command. During the TCP communication, the receiver sends regular
acknowledgment messages in order to advise the state of received data. When a
packet is lost, the sender receives a failed acknowledgment message and resends this
data.

The use of TCP makes transmission reliable, avoids a lot of transport problems
such as losses, duplication or error in packets. On the other hand, the establishment
of connection and the acknowledgement mechanism introduce too much delay for
several types of data which do not require relability.

1.3.3 UDP protocol

UDP [8] is a connection-less transport protocol. It is used for transmissions for which
error detection and correction are not nessesary. As a connection-less protocol, there
is no end-to-end semantics for UDP transmission, packets are sent individually.
It is possible that the first message will not reach the receiving application first.
Contrary to TCP, UDP has no acknowledgment mechanism, a message can be lost
in transmission without detection, is unreliable. Another difference comparing with

Mobile Multi-protocol HTTP Proxy 9

Figure 1.4: A proxy sits between the client et the server, it transfers requests
from the client to the server, and relays responses to the client from
the server.. http: // en. wikipedia. org/ wiki/ File:
Forward_ proxy_ h2g2bob. svg

TCP is that UDP has no congestion control. This makes UDP useful for multiple
multimedia communications such as voice over IP. Therefore, UDP is usually used
for multimedia transmission because it does not introduce delays.

1.3.4 Other transport protocols

Sometimes, the characteristics of TCP or UDP are not suitable for certain types of
Internet transmission, there are other transport protocols which can provide some
of the advantages of both TCP and UDP.

SCTP [12] SCTP is a message-oriented protocol. Like TCP, this protocol main-
tains a relationship between endpoints until all data has been successfully
transmitted. With SCTP transmission, data can be sent without error and in
sequence, with a clear delimitation of packets.

DCCP [6] DCCP is a transport protocol that provides bidirectional unicast con-
nections of congestion-controlled unreliable datagrams.

1.3.5 Proxy

A proxy is an application acting as the intermediary between a client application
and a server application. The client application, which seeks resources such as web
pages in the case of HTTP, multimedia content, or services from servers, can send
requests to the proxy. The proxy receives the requests, manipulates data, and relays
it to the server. When the proxy receives data from the server, it tansfers it back to
the client. Figure 1.4 shows the position of proxy in a usual communication.

The use of proxy has many advantages:

Security As the proxy can be the only point to connect from the external network,
external machines have no way to communicate directly with the internal
network without going through the proxy.

Management Proxies can control access to external networks by filtering ad-
dresses.

 http://en.wikipedia.org/wiki/File:Forward_proxy_h2g2bob.svg
 http://en.wikipedia.org/wiki/File:Forward_proxy_h2g2bob.svg

10 NICTA Technical Report TR-6329

Performance When a client seeks a resource existing in the cache memory of the
proxy, the proxy can provide this copy, rather than making a connection with
the server, to speed up the communication and to save the upstream capacity.

1.4 Objectives

The objective of this internship is to implement a multi-protocol proxy for mobiles.
This proxy can be executed on the client and the server side. The client-side proxy
should be able to receive requests from client applications, send HEAD requests to the
server to detect the type of content, select the appropriate transport protocol to send
the GET request to communicate with the server, and transfer the server’s responses
to the client application. The server-side proxy is installed on the web server, it
listens on different ports, for all supported transport protocols, to communicate
with the client-side proxy and uses TCP to communicate with the web server.

Because the Linux system is reliable and provides a lot of development tools for
networking programing, we decided to use is as the operating system, and C as the
programing language.

To make this proxy, two solutions are possible:

• Write a proxy from zero

• Use an existing off the shelf proxy and add multi-protocol features

It is a good idea to use an existing off the shelf proxy, because it will have more
features and will be more stable. However, the code of the proxy is likely to be
complex to read and no open source proxy supports multi protocol operation on the
server side. Therefore the best solution is to start with a simple proxy in order to
investigate basic proxy operation. Then, we select and study an open source proxy
to modify the code for the client side. Last, we assemble the client side and the
server side.

In the rest of this document is structured as follow. In chapter 2, we present the
implementation of a simple proxy which can only transfer data between the client
and the server. In chapter 3, we explain the extension of an open source proxy. In
chapter 4, we descreibe the development of the multi-protocols proxy. Finally, in
chapter 5, we summerase the work presented here as well as what is left for future
work.

Chapter 2

Development of a simple HTTP
proxy

In this chapter, we develop a simple transparent HTTP Proxy which only transfers
data between the client application and the web server using the TCP protocol. The
implementation of this transparent proxy is divided in 3 steps: the development of
proxy on the client side, on the server side, and the use of the synchronous I/O
multiplexing techniques.

2.1 Proxy on the client side

The client-side proxy should be able to listen on a TCP port (e.g., 3128) to receive
requests from client applications, then connect to the server and exchange data
before closing the connection.

2.1.1 Socket creation

int socket(int domain, int type, int protocol);

The socket() function allows to create a socket. The domain indicates the commu-
nication domain, AF INET for IPv4 addressing, AF INET6 for IPv6 or AF LOCAL for
local communication. The type of socket is specified by the type option. The value
of this option can be SOCK STREAM for connection-based byte streams, or SOCK DGRAM

for connection-less communication. The protocol option allows to select a trans-
port protocol. We can include arpa/inet.h file to use the name of protocol such
as IPPROTO TCP or IPPROTO UDP. This function returns the descriptor of the created
socket, or -1 on error.
2.1.2 Address preparation

Figure 2.1 shows the preparation of the network address. We create a struct

sockaddr in variable named servaddr which contains the IP address, the port, the
address family, and 8 additional bits in order to be compatible with the struct

sockaddr structure which is the generic format of network address.
The htons() and inet pton() functions convert the integer port number and

the IP address string to the network format.

11

12 NICTA Technical Report TR-6329

1 struct sockaddr_in servaddr;

2 memset (& servaddr, 0, sizeof(servaddr));

3 servaddr.sin_family = AF_INET;

4 servaddr.sin_port = htons (8123);

5 if(inet_pton(AF_INET, "192.168.1.10", &servaddr.

sin_addr) <= 0){

6 printf("inet_pton error for %s\n",argv [1]);

7 exit (0);

8 }

Figure 2.1: Preparation of a network address for socket.

2.1.3 Connection to the server

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

Once the socket and the network address are prepared, we can connect to the server
with the connect() function. The parameters are the file descriptor of the socket,
the network address, and the length of this address, normally calculated by the
sizeof() function. If the connection is created successfuly, the function returns 0,
otherwise, the function returns -1.
2.1.4 Sending/receiving data

1 ssize_t read(int fd, void *buf, size_t count);

2 ssize_t write(int fd, const void *buf, size_t count);

3

4 ssize_t recv(int sockfd, void *buf, size_t len, int

flags);

5 ssize_t send(int sockfd, const void *buf, size_t len,

int flags);

read()/write() and recv()/send() are two groups of function for receiv-
ing/sending data. The read()/write() functions allow to receive/send count bits
from/to the buffer pointed by buf to the number of socket fd. The recv()/send()

functions are very similar, they have flags that we don’t use at the moment.
2.1.5 Close socket

int close(int fd);

After sending/receiving data, it is important to close the socket connection to free
the system resources. The function is close(), and the only parameter is the
descriptor of socket.

2.2 Proxy on the server side

The proxy on the server side is an application which listens on a TCP port to
receive client requests and sends them to the web server listening on another port,
then receives responses from the web server and transfers them to the client.

Mobile Multi-protocol HTTP Proxy 13

Figure 2.2: Diagram of Socket usage for TCP connection..
https: // upload. wikimedia. org/ wikipedia/ commons/ a/ a1/

InternetSocketBasicDiagram_ zhtw. png

As figure 2.2 shows, the process of creating a TCP connection by using a socket
on the server side is different from the client side. On the server side, the proxy has
to use the bind(), listen(), and accept() functions.

2.2.1 bind() function

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

After creating the socket sockfd, the server-side proxy has to listen on address addr.
The addrlen value is the length of struct sockaddr. This operation makes the
server socket accessible by other network devices.
2.2.2 listen() function

int listen(int sockfd, int backlog);

The listen() function marks the socket as a passive receiving socket. This function
makes the socket able to accept new client connection. The backlog option is the
maximum number of clients that the proxy can have waiting.
2.2.3 accept() function

int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

When the proxy receives a new connection request, a client socket is created by the
accept() function. This function stores the network address of the client application

 https://upload.wikimedia.org/wikipedia/commons/a/a1/InternetSocketBasicDiagram_z htw.png
 https://upload.wikimedia.org/wikipedia/commons/a/a1/InternetSocketBasicDiagram_z htw.png

14 NICTA Technical Report TR-6329

in addr, and returns the descriptor of the newly created socket. The proxy can then
use this socket to communicate with the client application.

2.3 Infinite loop

In order to allow the proxy to stay active after exchanges of information and to
receive new client requests, we put the accept(), read(), and write() functions
in a permanent while(1) loop. However, the socket system is set in blocking mode,
when the proxy is sending/receiving data, all sockets are blocked, therefore the new
client connections would not be accepted.

To resolve this problem, we first created new processes with the fork() sys-
tem call when new clients connected. Thereby, the proxy could receive new client
connections and treat clients in different processes. However, the creation of new
processes requires more system resources and slowed down the data transmission.
In our experience, it took about 15 minutes to open the Facebook home page which
contains the HTML text, CSS/JavaScript files, and images.

Another solution is to implement synchronous Input/Output Multiplexing mode.
In this mode, the proxy is blocked by the select() or poll() function which mon-
itors all sockets. When there is data to read/write, the read()/write() function
is activated and the proxy is blocked again by select() or poll() until there is
data to exchange on any monitored socket. As the select() and poll() functions
are similar, we present the select() function in this section. The poll() will be
described in a later section (section 3.2.1 page 19).

int select(int nfds, fd_set *readfds, fd_set

*writefds, fd_set *exceptfds,

struct timeval *timeout);

The select() function allows to monitor multiple file descriptors, it blocks the
proxy until one of the sockets changes state. The usual parameters of the select()

function are nfds, which indicates the number of sockets to monitor, and readfds,
which is a list of all sockets to monitor.

Figure 2.3 is an example of the use of the select() function for sockets. We cre-
ate a variable of type fd set named fdset which is a list of sockets to monitor. Then,
we initialize the list by adding clients and server sockets in the list. The program is
blocked by the select() function until a socket changes state. If there is data to
read/write in the buffer for the client socket, the function FD ISSET(sock client)

returns a non-NULL value which triggers processing of the requests from client appli-
cations in the if statement. If there are objects to read/write in the buffer for the
server socket, the FD ISSET(sock server) function returns a NON NULL value which
triggers processing of the responses from server. After that, the program is blocked
again by the select() function.

By using a synchronous Input/Output Multiplexing technique, the proxy is much
faster than before, and its performance impact is no longer noticeable.

After implementing a simple proxy which repeats data between the client appli-
cation and the web server that we will reuse as the base for the server-side proxy in
chapter 4, we can use an existing open source proxy and add the required function-
alities by modifying its source code.

Mobile Multi-protocol HTTP Proxy 15

1 fd_set fdset;

2 while (1){

3 /* Initialization */

4 FD_ZERO (& fdset);

5 /* Add client socket to monitor */

6 FD_SET(sock_client, &fdset);

7 /* Add server socket to monitor */

8 FD_SET(sock_server, &fdset);

9

10 /* The select function monitors the sockets

in fdset */

11 if(select(FD_SETSIZE, &fdset, NULL, NULL,

NULL) <0){

12 mppx_log(conf, -1, "Error: select\n");

13 exit(-1);

14 }

15 /* In case that a client socket ’s state has

changed */

16 if(FD_ISSET(sock_client, &fdset)){

17 /* Read request from client */

18 if((iolen = receive(sock_client, buff_in,

conf)) <= 0)

19 break;

20 /* Connect to server */

21 sock_server = connect_server (&

send_addr_out, host,conf);

22 /* Send request to server */

23 send_message(sock_server, buff_in, iolen,

conf);

24 }

25 /* In case that the server socket is set */

26 if(FD_ISSET(sock_server, &fdset)){

27 /* Read response from server */

28 if((iolen = receive(sock_server,

buff_out, conf)) <= 0)

29 break;

30 /* Send response to client */

31 send_message(sock_client, buff_out,

iolen, conf);

32 }

33 }

Figure 2.3: Use of the select() function.

16 NICTA Technical Report TR-6329

Chapter 3

Extension of an open source proxy

Polipo is an open source proxy with multiple features [3]. In this chapter, we intro-
duce its background, usage, and architecture. After presenting the main functions
of Polipo, we modify its code to send HTTP HEAD requests, receive replies from the
server, and determine the type of transferred content before sending the HTTP GET

request.

3.1 Presentation of Polipo

3.1.1 Context

Polipo is a caching web proxy, it is designed for use by one person or a small group of
people. First published by Juliusz Chroboczek in 2003, it is a free software released
under the MIT License.1 Since 2009, the Polipo code is maintained by Chrisd who
was a 2009 Google Summer of Code for Tor/EFF. As Polipo is meant for small
networks, Chrisd worked on integrating support for Libevent which is a library for
managing I/O events portably. 2

3.1.2 Particularity

Compared with the simple proxy of chapter 2, Polipo has several advantages.

Multiple HTTP versions support Polipo supports new features of HTTP/1.1 [5],
such as the connection negotiation mechanism, and new HTTP header fields
like ETag. It can use HTTP/1.1 to communicate with a server even when the
client only supports HTTP/1.0.

Caching Polipo can store transferred objects in its cache in order to resend to other
client requesting them. This mechanism avoids creating new connections with
the server for the same request and saves bandwidth.

String control Polipo has strong capacities to control incoming strings. Func-
tions such as strcasecmp n() or httpParseHeaders() can compare strings

1MIT (Massachusetts Institute of Technology): It is free software license which allows users to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software

2https://blog.torproject.org/blog/polipo-portability-enhancements-summary

17

 https://blog.torproject.org/blog/polipo-portability-enhancements-summary

18 NICTA Technical Report TR-6329

or parse HTTP headers. This allows Polipo to extract information even when
in erroneous format.

IP address filtering By default, Polipo accepts requests only from localhost.
Administrators have to register the allowed client IP addresses in the allowedClients
variable.

Easy access to configuration With the polipo -v command, all configuration
variables via the Polipo are documented. These variables can be set in the
configuration file of Polipo, or simply command line. For example, polipo

logFile=log.txt indicates that Polipo should write its log in file log.txt

rather than on the terminal.

Web interface Polipo also has a web interface accessible at address http://localhost:
xxx (xxx is the listening port of Polipo, 8123 by default). This interface shows
all configuration variables as well as the manual of Polipo.

Compared other proxies on the market, we chose Polipo because it has advantages
listed below.

Light Mobile devices have limited capacity, a proxy for these cannot consume a lot
of resources. Polipo was designed as personal proxy and is a light application.

Pipelining Polipo is able to send several requests back to back, and parse responses
from the server to check whether it supports HTTP pipelining. The use of
pipelining saves bandwidth and speeds up network transmissions.

C language Polipo is written in C. This language makes it easier to port to other
Unix-based systems.

Open source Polipo is an open source software. Any developer is permitted to
use, modify, and republish the code source of Polipo.

Community Polipo also has a large community. Whoever registered in the com-
munity3 and needs help to use or modify Polipo can send emails to the mailing
list 4 and discuss with other people.

As Polipo has many advantages, we decided to extend it with multiprotocol
support for multiple input protocols.

3.1.3 Installation

Polipo is available from the Ubuntu repositories. We can use apt-get install

polipo to install Polipo or apt-get source polipo to get its source code.
On the other hand, the best way to get the source code of Polipo is to clone its

git repository, because the last version is always on this platform, to do so we can
use the git version control system.

git clone git:// git.wifi.pps.jussieu.fr/polipo

3https://lists.sourceforge.net/lists/listinfo/polipo-users
4polipo-users@lists.sourceforge.net

http://localhost:xxx
http://localhost:xxx
 https://lists.sourceforge.net/lists/listinfo/polipo-users
mailto:polipo-users@lists.sourceforge.net

Mobile Multi-protocol HTTP Proxy 19

3.1.4 Configuration

The polipo -v command line shows the configuration variables and their values. To
modify these, two ways are possible: by the configuration file or by command line.
The default configuration file, is /etc/polipo/config. One can also use polipo

-c filename to specify the file to use. When the modification is just for one run,
we can use polipo --name=value to specify a value to the name of configuration
variable.

3.2 Structure of Polipo

Polipo uses poll() to manage the Input/Output streams, therefore we first present
the poll() function. We also present the main architecture of Polipo. As Polipo
has data structures, we then present them and their relationship. We finish by
presenting how pipelining is implemented in Polipo.

3.2.1 poll() function

1

2 struct pollfd {

3 int fd; /* file descriptor */

4 short events; /* requested events */

5 short revents; /* returned events */

6 };

7

8 int poll(struct pollfd *fds, nfds_t nfds, int

timeout);

As presented in section 2.3 page 14, the poll() function blocks the program until
there is data to send/receive. The first parameter of poll() is a list of type struct

pollfd which contains file descriptor, events to mornitor, and revents which are
events triggered by the function indicates which event happened. The events are
represented by integer numbers definined in poll.h, for example, POLLIN for data
to read or POLLOUT for data to write. The combination of POLLIN & POLLOUT in
events specifies that both POLLIN and POLLOUT can be triggered for this file descrip-
tor. When there is data to read/write, poll() fills the events in revents, checks
the value of revents to be informed which event has happened. The third param-
eter, timeout, specifies an upper limit on the time for which poll() will block, in
milliseconds. This function returns the number of file descriptors which have data
to exchange. If a timeout accored, it returns the value 0. On error, it returns -1 and
sets errno.
3.2.2 Architecture of Polipo

In order to understand the operation of Polipo, we added functions to trace function
calls by using GCC5 macros FUNCTION , FILE , LINE , and we used GDB6

to check the behaviors of the main functions step by step.

5The GNU Compiler Collection is a open source compiler supporting multiple programming
languages such as C, C++ or objective C.

6The GNU Debugger is the standard debugger for the GNU operating system and derivatives.

20 NICTA Technical Report TR-6329

The poll() function is in a while(1) infinite loop of the eventLoop() function
in event.c. In parallel, there is a list of type struct FdEvents which contains file
descriptors events to monitor, and the behavior when there is data to treat for a given
file descriptor. When a client request or a server response comes, the findEvent()

function searches FdEvent from the list by checking whether its revents value is
not NULL, and calls the function informed by data. For example, after creating
a listener socket, the create listener() function calls schedule accept() which
stores the listener socket in the pollfds and the FdEvents lists with the function
do scheduled accept() as data. When a new client connection comes, poll()

function sets revents to POLLIN, the findEvent() function finds the file descriptor
and calls the function do scheduled accept() informed by data of the the event
corresponding to this file descriptor and calls the accept() function to accept this
client.

Figure 3.1 is the flowchart of Polipo. When a new client request comes,
Polipo reads the buffer to parse HTTP headers, and tries to find the server
connection in memory. If a connection to this server was used, Polipo uses
this server to send the client request, otherwise, Polipo can find the server via
the Domain Name Server (DNS) protocol. Once a connection with the web
server is established, Polipo sends client requests to the server, receives server
responses, and parses HTTP headers. If the Content-Length value is bigger
than the length of the received chunk, the received content is not complete.
Polipo transfers this packet to the client and waits to receive subsequent pack-
ets. This functionality is realized by the httpParseHeaders() function called by
HTTPServerReplyHandler()=>httpServerHandlerHeaders() which compares the
number of received bytes with the Content-Length to determine whether the con-
tent is complete. It calls HTTPServerFinish() to free the connection with the
server or httpServerReadData(int immediate=1) to immediately read data from
the connection.

To manage this much information for servers, clients, connections, and requests,
Polipo has its own data structures.

3.2.3 Data structures

Figure 3.2 shows the data structures of Polipo. After receiving a client request,
Polipo creates a variable of type HTTPRequest named request, parses HTTP head-
ers and stores them in an variable of type Object which contains fields such as
key, via, date, and creates a variable connection of type HTTPConnection which
contains information about the Internet connection, such as fd for file descriptor,
pipelined for number of requests sent back to back or buf to store data to send or
receive. The object and connection are pointed by request pointers for the client.
On the other side, request->request points to the request prepared to communi-
cate with the web server. The request of the server side has similar pointers for
HTTPConnection and Object which contain respectively information about Internet
connection with the web server and the HTTP headers parsed from server responses.

Mobile Multi-protocol HTTP Proxy 21

< Start >
Main() [main.c]

- treat arguments(-v, -c, -x......)
- initialisation
- create_listener() [io.c]

* prepare address
* bind()
* listen() =>sock 3

● * registerFdEventHelper(fd: 3) [event.c]

< Event loop >
EventLoop() [event.c]

- while()

again:

 < Event monitor >
poll()

If not sleep

sleep time

do_scheduled_accept() [io.c]
 - accept() => sock 4

httpAccept() [client.c]
- httpMakeConnection()[http.c]
- do_stream_buf(op: IO_READ, fd: 4)[io.c]

* registerFdEventHelper(fd: 4) [event.c]

findEvent(revents: 1, eventFd: 3, poll: 5, POLLIN) [event.c]

< Receive client request >
do_scheduled_stream() [io.c]

- read(fd: 4)

findEvent(revents: 1, eventFd: 4, poll: 1, POLLIN) [event.c]

< Get headers >
HttpParseHeaders() [http_parse.c]

parseHeaderLine() [http_parse.c]
- getHeaderValue() [http_parse.c]

find header

< Check address in cache >
objectGetFromDisk() [diskcache.c]

- makeDiskEntry()
* CHECK_ENTRY()
* open()
* validateEntry()
* writeHeaders()

objectFillFromDisk() [diskcache.c]
- read()

< Find server >
getServer(url:port) [server.c]

< Create server socket >
serverSocket() [io.c] => sock: 6

- socket()
do_scheduled_connect() [io.c]

- connect()
registerFdEventHelper(fd: 6) [event.c]

< Send request to server >
do_scheduled_connect()[io.c]

- connect(fd: 6)
httpWriteRequest() [server.c]
httpServerSendRequest() [server.c]

- do_stream(IO_WRITE, fd: 6)
* write(fd: 6)

findEvent(revents: 4, eventFd: 6, poll: 5, POLLOUT) [event.c]

< Receive server's response >
httpServerReply() [server.c]

- do_stream_buf(IO_READ, fd: 6)
* registerFdEventHelper(fd: 6)

findEvent(revents: 1, eventFd: 6, poll: 1, POLLIN) [event.c]

< Read server's response >
do_scheduled_stream() [io.c]

- read(fd: 6)
parseHeaderLine() [http_parse.c]

- getHeaderValue() [http_parse.c]

< Close server connection >
httpServerFinish() [server.c]
unregisterFdEventI(EventFd: 6) [event.c]

< send server response to client >
do_stream_h(op: IO_WRITE, fd: 4) [io.c]

- schedule_stream(op: IO_WRITEV, fd: 4) [io.c]

do_scheduled_stream() [io.c]
- writev(fd: 4)

< Close client connection >
httpClientFinish() [client.c]

< Get server address >
do_gethostbyname(url) [dns.c]

- really_do_dns(url) [dns.c]
* establishDnsSocket()[dns.c] => sock: 5
* registerFdEventHelper(fd: 5) [event.c]
* sendQuery()[dns.c]

httpServerGetConnection() [server.c]

address not found in cache

address in cache

findEvent(revents: 1, eventFd: 5, poll: 1, POLLIN) [event.c]

< Receive DNS response >
dnsReplyHandler() [dns.c]

- recv(fd: 5)
- dnsDecodeReply() [dns.c]

receive no finish

receive finish

Figure 3.1: Flowchart of Polipo. Polipo uses the poll() function to
supervise events and to react. The reactions can be accepting new
client connection, reading from the buffer, or writing to the buffer..

22 NICTA Technical Report TR-6329

HTTPRequest
client request

+connection: HTTPConnectionPtr
+request: HTTPRequest
+object: ObjectPtr

HTTPRequest
treating server

requests

+connection: HTTPConnectionPtr
+request: HTTPRequest
+object: ObjectPtr

HTTPConnection
client

connection

+fd: int
+buf: char*
+reqbuf: char*
+pipelined: int
+request: HTTPRequestPtr

Object
HTTP headers

+key: char*
+date: time t
+last modified: time t

HTTPConnection
client

connection

+fd: int
+buf: char*
+reqbuf: char*
+pipelined: int
+server: HTTPServer*
+request: HTTPRequestPtr

Object
HTTP headers

+key: char*
+date: time t
+last modified: time t

HTTPServer
server

information

+name: char*
+version: int
+pipeline: int
+request: HTTPRequestPtr
+connection: HTTPConnectionPtr

HTTPRequest
waiting server

requests

+object: ObjectPtr
+state: int

Object
HTTP headers

+key: char*
+date: time t
+last modified: time t

Client side
Server side

* 0..1

*

0..1

0..1

*

1

1

1

1

1

1
0..1

*

*

0..1

*

0..1

*

0..1

1

1

1

1

Figure 3.2: UML diagram of the data structures of Polipo. On the client
side, a request list is pointed by connection. On the server side,
there is a list of requests pointed by connection, to be treated.
Another list of requests are pointed by server, these requests are
waiting for a free connection. Each server has a list of connections.

3.2.4 Pipelining

The support of HTTP pipelining is one of Polipo’s specialties. In function
HTTPServerTrigger(), when there is a list of requests for the web server, it sends
two requests back to back. If it receives a response for each, it concludes that the
server supports pipelining, and continues to send multiple requests in a row to the
web server, otherwise, it sends one request at a time. Requests in an HTTP stream
are separated by an empty line, as Figure 3.3 shows. The number of requests sent
to the server in one stream is indicated by connection->pipelined value.

If the pipelining mode is activated, after receiving data from the server and
parsing the HTTP headers, Polipo sets the connection->request pointer to the
second request to treat, and moves the response for the second request to the head
position of buffer, then parses this response. This mechanism is realized in the
HTTPServerFinish() function.

3.3 Extension of Polipo

After presenting the operation of Polipo, we now modify the code to add the desired
functionalities. Firstly, we add a state indicator to track the state of requests at
each step. Then, we add functions to send HTTP HEAD requests. Finally, we
implement functions to process the received HTTP HEAD responses.

3.3.1 State of request

As one request for the web server corresponds to a request variable in the data
structure of Polipo, it is important to keep track of the state of the request in order
to know at which step the request is. We add an int state attribute in the struct

HTTPRequest. When a request is made by HTTPMakeRequest(), we initialize the
state to REQ_INIT. When the request is prepared by the prepareRequests(), it is

Mobile Multi-protocol HTTP Proxy 23

1 GET /rsrc.php/v2/yY/r/u8iA3kXb8Y1.css HTTP /1.1

2 Host: static.ak.fbcdn.net

3 User-Agent: Mozilla /5.0 (X11; Linux i686; rv :7.0.1) Gecko

/20100101

4 Firefox /7.0.1

5 Accept: text/css;q=0.1

6 Accept-Language: en-us ,en;q=0.5

7 Accept-Encoding: gzip , deflate

8 Accept-Charset: ISO-8859-1 ,utf-8;q=0.7 ,*;q=0.7

9 Referer: http :// fr-fr.facebook.com/

10 Connection: keep-alive

11

12 GET /rsrc.php/v2/y-/r/507 fwwUzcWs.js HTTP /1.1

13 Host: static.ak.fbcdn.net

14 User-Agent: Mozilla /5.0 (X11; Linux i686; rv :7.0.1) Gecko

/20100101

15 Firefox /7.0.1

16 Accept: *

17 Accept-Language: en-us ,en;q=0.5

18 Accept-Encoding: gzip , deflate

19 Accept-Charset: ISO-8859-1 ,utf-8;q=0.7 ,*;q=0.7

20 Referer: http :// fr-fr.facebook.com/

21 Connection: keep-alive

Figure 3.3: Polipo sends two requests back to back. If the server supports
pipelining, it returns a response for each request, otherwise, it only
returns a response for the first one..

24 NICTA Technical Report TR-6329

Figure 3.4: Different states of a request variable through a full process.

ready to be sent to the server and we change its state to REQ_READY. If the request is
sent correctly, the httpServerSideHandlerCommon() function is called, it changes
the state to REQ_SENT. When response to this request is successfuly received, we
change the state to REQ_RECV. Figure 3.4 presents the different states of a request
of our extension to Polipo.

3.3.2 Sending HEAD requests

The prepareRequests() function prepares requests in the connection->reqbuf

buffer. This is the step where we prepare a HEAD request. The strategy is that
we change the HTTP method to use in terms of the state of request. If request is
in state REQ_INIT, we modify request->method to METHOD_HEAD to send an HTTP
HEAD request. If the state of the request is HEAD_RECV, this means that the HTTP
HEAD response is already received, we then restore the request->method back to
the original method to send the full request initially received from the client. Once
the request prepared, it is sent by the HTTPServerSendRequest() function.

3.3.3 Reception of HEAD replies

When Polipo receives data from web server, the HTTPServerReplyHandler() func-
tion is called. In this function, we check the state of request. If the state was
REQ_SENT, we change the state of request to REQ_RECV, and call the receiveHandler()
which is the normal behavior of Polipo. If the state was HEAD_SENT, we change the
state to HEAD_RECV, and the receiveHeaderHandler() to parse the Content-Type

value of the HTTP headers by calling the parse header() function. After that, the
HTTPServerTrigger() function is called to prepare a GET request message and to

Mobile Multi-protocol HTTP Proxy 25

send this message to the server.
Pipelining is a hard point to manage after receiving HEAD responses. Inspired by

the HTTPServerFinish() function, the idea is to check the connection->pipelined
value of the server connection structure, and to compare number of bytes received
with the Content-Length value. If the connection->pipelined value is larger
than 1, and Polipo received more bytes than the length of header returned by
findEndOfHeaders(), these additional bytes are certainly a response to a second
request. We then move these bytes to the top of the connection buffer, and call the
httpServerReply(int immediate=1) function to immediately receive the second
reply. In the other case, if the connection->pipelined value is bigger than 1, but
Polipo received the same number of bytes as the length of header, this means Polipo
sent more requests but received only one response, so this server does not support
the pipelining, we then deactivate the pipelining mode for this server by setting the
server->pipeline value to a negative number.

3.4 Results and conclusion

In this chapter, we studied the functionalities of Polipo, its structure, and we mod-
ified the relevant functions to get HTTP header information before sending the full
GET request.

After modifying the code of Polipo, the proxy can send an HTTP HEAD re-
quest before sending the original request of the client to the web server to obtain
the HTTP header information about the required object. As figure 3.5 describes,
the new Polipo requests have HEAD_SENT and HEAD_RECV states, and are able to get
information of content to transfer without receive this content.

This modified Polipo proxy is useful for the development of our multi-protocol
proxy on the client side. In the next chapter, we present the implementation of a
multi-protocol proxy on the server side, and its integration with this Polipo proxy.

26 NICTA Technical Report TR-6329

Figure 3.5: Compared with the original states of a request, we added
functions and states to treat HEAD requests. These are colored in
pink.

Chapter 4

Development of a multi-protocol
proxy

After developing a simple proxy and extending an open source one, we now imple-
ment our full multi-protocol proxy, MPPX. This proxy has two sides. The client-side
proxy is based on the extended Polipo proxy. It should be able to select the trans-
port protocols to use to relay data to the server-side proxy. The server-side proxy,
which is running on the web server, should be able to receive requests from sev-
eral transport protocols, forward the requests to web server over TCP, and return
responses from the server to the client as figure 4.1 shows.

In this chapter, we firstly present the implementation of the multi-protocol proxy
on the server-side. Then, we explain the implementation on the client-side, as well
as the result of this implementation. We finally present the usage of this proxy.

4.1 MPPX on the server side

MPPX on the server side is installed on the web server, it is designed to use several
transport protocols, such as TCP or UDP, to communicate with the MPPX of the
client-side, and TCP for communication with the web server.

4.1.1 Data structures

In MPPX, there are three types of sockets, the listening socket to receive new
client connections, the client sockets to communicate with client applications,
and the server socket to communicate with the web server. Each type of socket
is managed by a list of its type.

As MPPX uses different protocols with different client applications, a client is
identified by the file descriptor, addr, and the protocol. Also, a protocol

used by a client is identified by protocol number and protocol type. The protocol
numbers are defined in the proto.h header of Linux. The type of protocol is the
type of connection such as SOCK STREAM or SOCK DGRAM.

The list of listening sockets is of type MPPXSocket because the sockets of this list
use different transport protocols. In order to distinguish listening sockets and client
sockets, we use a mode attribute which allows to assign LISTEN SOCK, CLIENT SOCK,
or SERVER SOCK.

27

28 NICTA Technical Report TR-6329

GET Request(TCP)

GET Response(TCP)

HEAD Request(TCP)

HEAD Response(TCP)

GET Request(UDP)

GET Response(UDP)

GET Request(TCP)

GET Response(TCP)

GET Response(TCP)

GET Request(TCP)

Client
Proxy

Server
Proxy

Figure 4.1: General MPPX architecture. The client-side proxy sends HEAD

requests to the server, receives replies, and selects the appropriate
transport protocol to transfer the content..

The data structure to manage the server seems to be simple because the proxy
uses only TCP as the transport protocol. However, the challenge is to identify which
client socket is linked to this server socket, and to advise which server socket is free
to transfer data. This is why we use a client pointer. When a server response
comes, the proxy can use this pointer to identify the corresponding client to forward
this response to. After finishing communication with a client, the proxy sets a NULL

value in the client attribute of the server structure.
There is a list of type pollfd including all file descriptors from which MPPX

receives data. The number of file descriptors of this list is the sum of number of fd
in listering socket, client socket, and server socket. These structures are
described by figure 4.2.

4.1.2 Process of MPPX

For performance reasons, MPPX uses the poll() function to monitor different sock-
ets and to control input/output streams because this function can differentiate in-
put/output events.

When the server mode is activated, The proxy creates one listening socket per
supported protocol to receive new client connections. It then puts every listening
socket in a list of type pollfds, named poll sockets, which is supervised by the
poll() function in an infinite loop.

When data is available, the revents of the corresponding socket is set to POLLIN.
MPPX finds this socket and calls the mppx read() function to read data. There are
three types of socket.

Mobile Multi-protocol HTTP Proxy 29

MPPXSocket

+fd: int
+proto: int = IPPROTO TCP, IPPROTO UDP
+type: int = SOCK STREAM, SOCK DGRAM
+mode: enum sock mode = LISTEN SOCK, CLIENT SOCK
+addr: struct sockaddr in

MPPXServer

+fd: int
+mode: enum sock mode = SERVER SOCK
+addr: struct sockaddr in*
+client: MPPXSocketPtr

pollfd

+fd: int
+events: short
+revents: short1

1

1 1

1

1

Figure 4.2: Main data structures of MPPX. MPPX has a list of type
MPPXServer to manage servers, a list of type MPPXSocket to manage
clients, and a list of type pollfd to control the input/output events.

Listening sockets receive new client connections, MPPX adds this new client to
the client sockets list, reads data, and adds the new client socket in the
poll() function to receive potential data. Then, MPPX finds a free server
connection or connects to the web server to send the data.

Client sockets receive messages from identified clients. Without creating a new
client, MPPX just reads the messages and forwards them to the web server
over a free connection or a new connection.

Server sockets receive client requests and return responses to the proxy. After
receiving server responses, MPPX finds the client from which it received the
request and sends the response to this client.

Additionally, when the mppx read() function receives 0 bytes from the read()

or recvfrom() functions, it is assumed the transmission is finished. MPPX then
removes the socket if it is from the client application, or frees the server connection
if it is from the web server. As we don’t control the output stream, the POLLOUT

event is deactivated and the mppx write() function is not used at the moment. This
process is described by figure 4.3.

Having described and implemented the server-side multi-protocol proxy, the
client-side needs to be adapted. The extended Polipo proxy can only send HEAD

requests to web servers and detect the type of content to transfer, it does not sup-
port transport protocols other than TCP yet, we now implement this on the client
side.

4.2 MPPX on the client side

In this section, we reuse the extended source code of Polipo from chapter 3 in order
to add support for multiple transport protocols.

After receiving HTTP headers and parsing the type of content in the
receiveHeaderHandler() function, we first add the selectProto() function which

30 NICTA Technical Report TR-6329

poll()

Begin

Accept
new client

Forward
to web server

Forward to
client application

From client socket

From listening socket From server socket

Figure 4.3: MPPX’s poll() loop. MPPX looks for the type of incoming
socket to decide the next action..

checks the Content-Type in its parameter and returns the number of an appropri-
ate protocol to transport this content. By default, the function returns TCP for
unknown types of content.

Once the transport protocol is chosen, the program runs a switch() statement
which defines the followup behavior. For TCP, the program runs its normal func-
tions to communicate directly with the web server. For other protocols, the program
creates new connections to the server-side proxy, prepares and sends request then
registers the new file descriptor in the pollfds list. When reply on this file descrip-
tor is received, the read udp stream() is called. As Polipo already manages HTTP
headers, we use its functions for UDP as well: read udp stream() reads the reply
message into a local buffer, copies the message into the buffer of the TCP connec-
tion, then calls HTTPServerReplyHandler() to let Polipo manage server replies and
to return to the client application.

4.3 Result

After adding a server-side and client-side proxy, the MPPX can work correctly over
TCP. However, as the time of this internship was limited, the MPPX UDP part on
the client side is not quite stable yet and requires some debugging. As no web
server accept UDP connections, the client MPPX can only send UDP requests
to localhost on which the server MPPX is running. This issue can be fixed by
putting an IP address string to serverName which was localhost in the function
receiveHeaderHandler().

4.4 Usage of MPPX

MPPX is based on the source code of Polipo, it can be executed by Polipo command
options.

polipo launches the proxy on client mode.

Mobile Multi-protocol HTTP Proxy 31

polipo -s launches the proxy on server mode.

polipo -d allows to check logs of transmission in detail.

polipo -v shows configuration variables of Polipo.

polipo -h shows the list of options of polipo command.

Almost options can be combined, for example polipo -s -d to show logs on
server mode.

32 NICTA Technical Report TR-6329

Chapter 5

Conclusion

Content on the web is increasingly multimedia. However, the use of TCP as the
transport protocol is not always the most appropriate for some types of data. The
implementation of a multi-protocol proxy is one possible solution to address this.

A multi-protocol proxy is an application able to transfer data using different
transport protocols. It is divided in two sides. The client side proxy receives HTTP
GET requests over TCP, modifies the HTTP method to HEAD, and sends the HEAD

request to the web server in order to detect the type of content. Then, the proxy
selects an appropriate transport protocol for this type to transfer this content. The
server-side proxy receives HTTP requests from the proxy of the client side over
multiple protocols, transfers the requests to the web server over TCP, and returns
responses of the web server to the proxy of client side.

The implementation of the multi-protocol proxy was done in 3 phases. Firstly,
we did a simple proxy which forwards requests and responses between the client
application and the web server. This simple proxy allowed us to understand the
HTTP and the socket functions. As there are several open source proxies on the
market which are more stable and have more functionalities, we decided to extend
the source code of one of them, Polipo, as the multi-protocol proxy on the client-side.
This extension realized the function of sending/receiving HEAD requests/responses
to the web server. Once this extension finished, we implemented the multi-protocol
proxy on the server side and modified the client side to support multiple transport
protocols.

This 24 weeks internship took place at National ICT Australia Ltd. During
this period, we practiced a lot of network knowledge such as the HTTP protocol,
the socket interface, and the OSI model, improved programming skills in the C
language, and familiarized ourselves with a lot of open source tools such as gdb,
git, Dia or LATEX.

Future work

The multi-protocol proxy is still in development, future work includes the following:

Support of multiple servers This functionality can be added by using the IP ad-
dress of serverName rather than localhost for the gethostbyname() function
in the server.c file.

33

34 NICTA Technical Report TR-6329

Support of others transport protocols The actual multi-protocol proxy sup-
ports only TCP and UDP. The support of other transport protocols such as
DCCP or SCTP would improve the flexibility of the proxy.

Support of OML OML [7] is a C library which would allow to measure the time
of transmission of the proxy, and visualize the improvement of using the multi-
protocol proxy.

Conception of MPPX protocol Making a new MPPX protocol will help us to
avoid disadvantages of current protocols and gives us much flexibility. We
could add sequence numbers for MPPX packets to control the sequence of
UDP datagrams, distribute an identity number to each client to give them
accessibility to the MPPX server.

Implementation in Android phones The tests were done on a Linux machine,
this proxy should also work for Android phones.

Bibliography

[1] Ramón Agüero et al. “OConS: Towards Open Connectivity Services in the Fu-
ture Internet”. In: MONAMI 2011, Third International ICST Conference on
Mobile Networks & Management. Ed. by Susana Sargento and Ramón Agüero.
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering. Aveiro, Portugal: Springer-Verlag Berlin,
Sept. 2011.

[2] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control.
RFC 5681. Fremont, CA, USA: RFC Editor, Sept. 2009. url: http://www.
rfc-editor.org/rfc/rfc5681.txt.

[3] Juliusz Chroboczek. The Polipo Manual. Université Paris Diderot. Paris, France,
2006. url: http://www.pps.univ-paris-diderot.fr/~jch/software/
polipo/polipo.pdf.

[4] Luis Diez et al. “Design and Implementation of the Open Connectivity Services
Framework”. In: MONAMI 2012, 4th International Conference on Mobile Net-
works and Management, OConS workshop. Ed. by Lucio S. Ferreira and Lucian
Suciu. Lecture notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering. TUHH, EAI. Hamburg, Germany:
ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), Sept. 2012.

[5] Roy T. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616.
Fremont, CA, USA: RFC Editor, June 1999. url: http://www.rfc-editor.
org/rfc/rfc2616.txt.

[6] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram Congestion Control
Protocol (DCCP). RFC 4340. Fremont, CA, USA: RFC Editor, Mar. 2006.
url: http://www.rfc-editor.org/rfc/rfc4340.txt.

[7] Olivier Mehani et al. An Instrumentation Framework for the Critical Task of
Measurement Collection in the Future Internet. Under review. 2012.

[8] Jonathan B. Postel. User Datagram Protocol. RFC 768. Fremont, CA, USA:
RFC Editor, Aug. 1980. url: http://www.rfc-editor.org/rfc/rfc768.
txt.

[9] SAIL project. Architectural Concepts of Connectivity Services. Deliverable
FP7-ICT-2009-5-257448-SAIL/D-4.1(D-C.1). EC Information Society Tech-
nologies Programme, July 2011. url: http://www.sail-project.eu/wp-
content/uploads/2011/08/SAIL_D.C.1_v1.0_Final_PUBLIC.pdf.

35

http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/polipo.pdf
http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/polipo.pdf
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc4340.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.sail-project.eu/wp-content/uploads/2011/08/SAIL_D.C.1_v1.0_Final_PUBLIC.pdf
http://www.sail-project.eu/wp-content/uploads/2011/08/SAIL_D.C.1_v1.0_Final_PUBLIC.pdf

36 NICTA Technical Report TR-6329

[10] SAIL project. Architecture and Mechanisms for Connectivity Services. De-
liverable FP7-ICT-2009-5-257448-SAIL/D4.2(D-C.2). EC Information Society
Technologies Programme, July 2012.

[11] SAIL project. Description of Project Wide Scenarios and Use Cases. De-
liverable FP7-ICT-2009-5-257448-SAIL/D2.1(D-A.1). EC Information Society
Technologies Programme, Apr. 2011. url: http://www.sail-project.eu/
wp-content/uploads/2011/09/SAIL_DA1_v1_2_final.pdf.

[12] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960. Fre-
mont, CA, USA: RFC Editor, Sept. 2007. url: http://www.rfc-editor.
org/rfc/rfc4960.txt.

http://www.sail-project.eu/wp-content/uploads/2011/09/SAIL_DA1_v1_2_final.pdf
http://www.sail-project.eu/wp-content/uploads/2011/09/SAIL_DA1_v1_2_final.pdf
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc4960.txt

Acronyms

DCCP Datagram Congestion Control Protocol

DNS Domain Name Server

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

MPPX multi-protocol proxy

NAT Network Address Translation

NICTA National ICT Australia Ltd

OSI Open Systems Interconnection

SAIL Scalable and Adaptive Internet Solutions

SCTP Stream Control Transmission Protocol

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

WWW World Wide Web

37

38 NICTA Technical Report TR-6329

List of Figures

1.1 HTTP communication . 5
1.2 HTTP request . 5
1.3 HTTP reply . 7
1.4 Position of proxy in the HTTP communication 9

2.1 Preparation of a network address for socket 12
2.2 Socket usage for TCP connection . 13
2.3 Use of the select function . 15

3.1 Flowchart of Polipo . 21
3.2 Data structures of Polipo . 22
3.3 Pipelined request . 23
3.4 State machine of Polipo . 24
3.5 State machine of Polipo after extending 26

4.1 General MPPX architecture . 28
4.2 Main data structures of MPPX . 29
4.3 MPPX’s poll(loop) . 30

39

	Acknowledgements
	Abstract
	Contents
	Context and State of the Art
	National ICT Australia
	SAIL Project
	State of the art
	HTTP Protocol
	TCP protocol
	UDP protocol
	Other transport protocols
	Proxy

	Objectives

	Development of a simple HTTP proxy
	Proxy on the client side
	Socket creation
	Address preparation
	Connection to the server
	Sending/receiving data
	Close socket

	Proxy on the server side
	bind() function
	listen() function
	accept() function

	Infinite loop

	Extension of an open source proxy
	Presentation of Polipo
	Context
	Particularity
	Installation
	Configuration

	Structure of Polipo
	poll() function
	Architecture of Polipo
	Data structures
	Pipelining

	Extension of Polipo
	State of request
	Sending HEAD requests
	Reception of HEAD replies

	Results and conclusion

	Development of a multi-protocol proxy
	MPPX on the server side
	Data structures
	Process of MPPX

	MPPX on the client side
	Result
	Usage of MPPX

	Conclusion
	Bibliography
	Acronyms
	List of Figures

