DAPS: Intelligent Delay-Aware Packet Scheduling For Multipath Transport

Nicolas Kuhn ^{1,2,3} Emmanuel Lochin ² Ahlem Mifdaoui ² Golam Sarwar ³ Olivier Mehani ³ Roksana Boreli ³

¹IMT Telecom Bretagne, France

²Université de Toulouse, ISAE, United States

³NICTA, University of New South Wales, Australia

- Motivation
- 2 Receiver blocking on asymmetric links
- Oelay-Aware Packet Scheduling (DAPS)
- Performance of DAPS
- Conclusion

Motivation

- Increasing population relying on smart-phones and tablets
- Heterogeneous wireless network access
- Motivation for research and industry in multipath transport protocols:
 - discussions at IETF for multipath capable versions of TCP (MPTCP included in Apple iOS7)
 - adoption of an enhancement of SCTP, CMT-SCTP, for WebRTC
- Smart-phones and tablets, Wi-Fi and 3G/4G links :
 - asymmetry between the links
 - receiver's buffer block : out-of-order packets occupying the entire receiver's buffer and eventually stalling the whole transmission
- Existing solution for this issue :
 - buffer management (increasing its size or splitting it)
 - specific retransmission policies
- Our solution :
 - scheduling algorithm, based on delay measurements, for in-order reception in CMT-SCTP

Our contribution

Model for maximum blocking time :

- model of the maximum time a packet will wait in the receiver's buffer for in-order delivery
- validation of the model with NS-2 simulations

Delay-Aware Packet Scheduling (DAPS)

- our scheduling algorithm to reduce the blocking time
- description of the algorithm behind DAPS
- implementation and evaluation of DAPS in NS-2

- Motivation
- Receiver blocking on asymmetric links
- Oelay-Aware Packet Scheduling (DAPS)
- Performance of DAPS
- Conclusion

Receiver blocking on asymmetric links

Objectives of this section :

- source of receiver blocking
- model of the maximum blocking time
- validation of the model

Notations and topology :

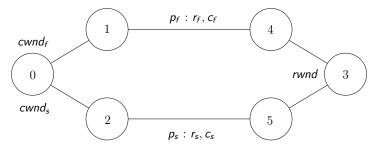
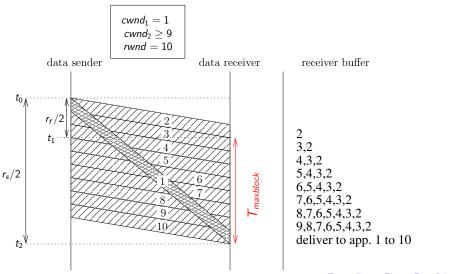


FIGURE: Two paths p_i (where i is s for "slow", or f for "fast")


Source of receiver blocking

 for each path, the "blind" round robin sends as much data as the congestion window allows :

$$\min(cwnd_i - unack_i, rwnd - \sum_i unack_i)$$
 (1)

- if $rwnd \sum_{i} unack_{i} = 0$, no more data can be sent
- the receiver's buffer is blocked until the needed packet arrives
- this is more frequent with asymmetric links

Source of receiver blocking - example

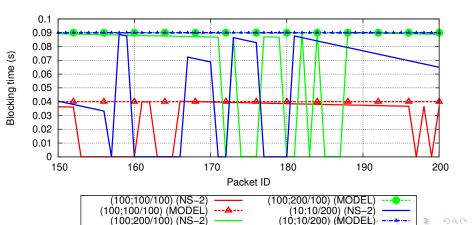
Model of the maximum blocking time

Notations :

- TSN_i: sequence number of each packet
- L : size of a data packet
- $8L/c_i$: time to place one packet on the physical medium

Sequence triggering maximum blocking time :

- TSN_1 on slow path p_s , TSN_2 - TSN_{10} on fast path p_f
- $t_1 = t_0 + r_f/2 + 8L/c_f$: reception of TSN_2
- $t2 = t_0 + r_s/2 + 8L/c_s$: reception of TSN_1


$$T_{maxblock} = t_2 - t_1$$

= $\frac{r_s}{2} + \frac{8L}{c_s} - \frac{r_f}{2} - \frac{8L}{c_f}$. (2)

Validation of the model

Simulation parameters :

- $r_f = 20 \text{ ms}, rwnd = 65 \text{ kB}, L = 1500 \text{ B}$
- \circ $(c_f; c_s/r_s)$

- Motivation
- 2 Receiver blocking on asymmetric links
- Performance of DAPS
- Conclusion

Delay-Aware Packet Scheduling (DAPS)

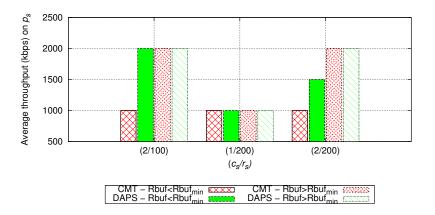
Objectives of DAPS :

• in-order arrival at the receiver to avoid receiver's buffer blocking

• DAPS pseudo-code :

- if capacity is available on multiple paths :
 - DAPS generates $S = \{s_1, \ldots, s_m\}$
 - each element $s_j = (TSN_j, p_j)$ represents that packet TSN_j is to be transmitted on path p_i
 - DAPS sends as much packets as possible, considering the rwnd
- if capacity is available on the fast path only :
 - DAPS sends as much packets as possible, considering the rwnd
- if capacity is available on the slow path only :
 - DAPS sends as much packets as possible, considering the rwnd and the last generated S

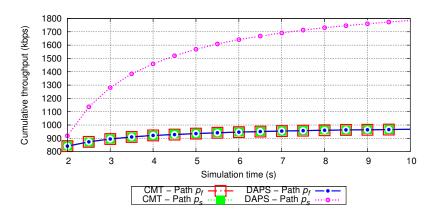
- Motivation
- 2 Receiver blocking on asymmetric links
- Oelay-Aware Packet Scheduling (DAPS)
- Performance of DAPS
- Conclusion


Simulation parameters

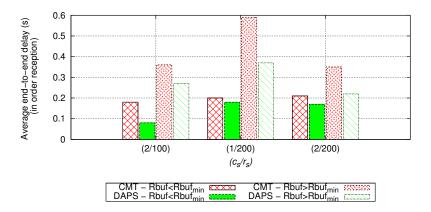
- dumbbel network topology
- various receiver's buffer size, capacities and RTTs
- Rbuf_{min}: minimum receiver's buffer size to address buffer blocking

$$Rbuf_{min} = \sum_{i \in \{p_1, \dots, p_n\}} c_i \times \max_{i \in \{p_1, \dots, p_n\}} r_i. \tag{3}$$

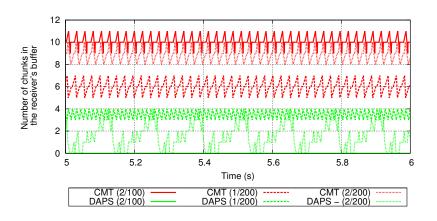
Label	Cs	r _s	Rbuf		Rbuf _{min}
$(c_s;r_s)$	[Mbps]	[ms]	[kB]		[kB]
(2/100)	2	100	35	<	37.5
(2/100)	2	100	500	>	37.5
(1/200)	1	200	45	<	50
(1/200)	1	200	500	>	50
(2/200)	2	200	45	<	75
(2/200)	2	200	500	>	75


Average use of the slow path

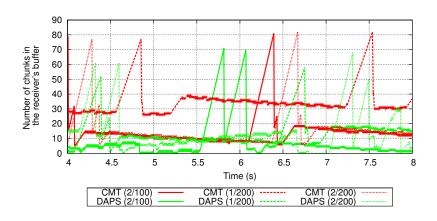
- $c_s = 2$ Mbps and $Rbuf < Rbuf_{min}$: the capacity of path p_s cannot be fully exploited with CMT-SCTP
- DAPS enables improved use of this capacity


Cumulative throughput

- $(c_f = 1 \text{ Mbps}, r_f = 20 \text{ ms}) (c_f = 2 \text{ Mbps}, r_f = 200 \text{ ms})$ $Rbuf < Rbuf_{min}$
- DAPS increases by 42% the cumulative throughput of both paths


Average application level transmission delay

 DAPS allows for chunks to be delivered in-order earlier to the application


Occupancy of a small receiver's buffer

• DAPS reduces the occupancy of the receiver's buffer

Occupancy of a large receiver's buffer

• DAPS reduces the occupancy of the receiver's buffer

- Motivation
- 2 Receiver blocking on asymmetric links
- Oelay-Aware Packet Scheduling (DAPS)
- Performance of DAPS
- Conclusion

Conclusion

- We argued for enhanced packet scheduling mechanisms
- We present Delay-Aware Packet Scheduling to improve the performance of multipath transport
- When there is asymmetry between the path, with our solution :
 - the buffer occupancy can be reduced by up to 77%
 - the delivery-to-application delay is consistently shorter
- Future work :
 - implement DAPS in FreeBSD's CMT SCTP and Linux implementation of MPTCP

21