
Revisiting Old Friends: Is CoDel Really Achieving What
RED Cannot?

Nicolas Kuhn 1 Emmanuel Lochin 2 Olivier Mehani 3

1IMT Telecom Bretagne, France

2Université de Toulouse, France

3National ICT Australia, Australia

1/21 Revisiting Old Friends: CoDel vs. RED 2014 1 / 21

Context and objectives

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

2/21 Revisiting Old Friends: CoDel vs. RED 2014 2 / 21

Context and objectives

Context - History of AQM

Deployment of loss-based TCP

TCP flows competing on a bottleneck would back off at the same
moment (tail drops)

⇒ under utilization of the available capacity

⇒ lots of loss events

Active Queue Management (AQM)

a solution to avoid loss synchronization

queue management schemes that drop packets before tail drops occur

due to operationnal and deployment issues: ⇒ no AQM scheme has
been turned on

Buffer size in the routers

to overcome from physical layer impairments (fluctuating bandwidth)

to avoid loss events

⇒ large buffers are deployed in the Internet
3/21 Revisiting Old Friends: CoDel vs. RED 2014 3 / 21

Context and objectives

Context - History of AQM

Deployment of loss-based TCP

TCP flows competing on a bottleneck would back off at the same
moment (tail drops)

⇒ under utilization of the available capacity

⇒ lots of loss events

Active Queue Management (AQM)

a solution to avoid loss synchronization

queue management schemes that drop packets before tail drops occur

due to operationnal and deployment issues: ⇒ no AQM scheme has
been turned on

Buffer size in the routers

to overcome from physical layer impairments (fluctuating bandwidth)

to avoid loss events

⇒ large buffers are deployed in the Internet
3/21 Revisiting Old Friends: CoDel vs. RED 2014 3 / 21

Context and objectives

Context - History of AQM

Deployment of loss-based TCP

TCP flows competing on a bottleneck would back off at the same
moment (tail drops)

⇒ under utilization of the available capacity

⇒ lots of loss events

Active Queue Management (AQM)

a solution to avoid loss synchronization

queue management schemes that drop packets before tail drops occur

due to operationnal and deployment issues: ⇒ no AQM scheme has
been turned on

Buffer size in the routers

to overcome from physical layer impairments (fluctuating bandwidth)

to avoid loss events

⇒ large buffers are deployed in the Internet
3/21 Revisiting Old Friends: CoDel vs. RED 2014 3 / 21

Context and objectives

Context - Bufferbloat

Origins of the bufferbloat

deployment of aggressive congestion control (such as TCP CUBIC)

large buffers in the routers

⇒ permanent queuing in the routers

⇒ high queuing delay

⇒ network latency

AQM

In the past proposed to avoid loss synchronisation, is one solution for the
bufferbloat:

adapt the knowledge of AQM schemes to control the queuing delay in
the routers

in the 90’s: RED was based on the number of packets in the buffer

recent proposals: PIE and CoDel are based on the queuing delay
4/21 Revisiting Old Friends: CoDel vs. RED 2014 4 / 21

Context and objectives

Context - Bufferbloat

Origins of the bufferbloat

deployment of aggressive congestion control (such as TCP CUBIC)

large buffers in the routers

⇒ permanent queuing in the routers

⇒ high queuing delay

⇒ network latency

AQM

In the past proposed to avoid loss synchronisation, is one solution for the
bufferbloat:

adapt the knowledge of AQM schemes to control the queuing delay in
the routers

in the 90’s: RED was based on the number of packets in the buffer

recent proposals: PIE and CoDel are based on the queuing delay
4/21 Revisiting Old Friends: CoDel vs. RED 2014 4 / 21

Context and objectives

Objectives

Considering that

⇒ a performance comparison of RED, CoDel and PIE is missing

⇒ their impact on various congestion controls is missing

Our objectives are

⇒ compare the performance of RED and CoDel with various TCP
variants (delay-based / loss-based)

⇒ discuss deployment and auto-tuning issues

What we do not consider:

PIE: code was missing when running the simulations

FQ-CoDel (hybrid scheduling/CoDel): did not exist at the time of the
study

5/21 Revisiting Old Friends: CoDel vs. RED 2014 5 / 21

Context and objectives

Objectives

Considering that

⇒ a performance comparison of RED, CoDel and PIE is missing

⇒ their impact on various congestion controls is missing

Our objectives are

⇒ compare the performance of RED and CoDel with various TCP
variants (delay-based / loss-based)

⇒ discuss deployment and auto-tuning issues

What we do not consider:

PIE: code was missing when running the simulations

FQ-CoDel (hybrid scheduling/CoDel): did not exist at the time of the
study

5/21 Revisiting Old Friends: CoDel vs. RED 2014 5 / 21

Context and objectives

Objectives

Considering that

⇒ a performance comparison of RED, CoDel and PIE is missing

⇒ their impact on various congestion controls is missing

Our objectives are

⇒ compare the performance of RED and CoDel with various TCP
variants (delay-based / loss-based)

⇒ discuss deployment and auto-tuning issues

What we do not consider:

PIE: code was missing when running the simulations

FQ-CoDel (hybrid scheduling/CoDel): did not exist at the time of the
study

5/21 Revisiting Old Friends: CoDel vs. RED 2014 5 / 21

RED and CoDel

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

6/21 Revisiting Old Friends: CoDel vs. RED 2014 6 / 21

RED and CoDel

RED and CoDel

Random Early Detection (RED) from the 90’s

dropping probability, pdrop: function of the number of packets in the
queue

depending on pdrop, incoming packets might be dropped

Controlled Delay (CoDel) to tackle bufferbloat

measures the queuing delay for each packet, qdelp

Ndrop is the cumulative number of drop events

every interval (default is 100 ms), while dequeuing p:

qdelp > target delay (5 ms) qdelp < target delay

p is dropped p is dequed
Ndrop + + Ndrop = 0

interval= interval√
Ndrop

interval= 100 ms

7/21 Revisiting Old Friends: CoDel vs. RED 2014 7 / 21

RED and CoDel

RED and CoDel

Random Early Detection (RED) from the 90’s

dropping probability, pdrop: function of the number of packets in the
queue

depending on pdrop, incoming packets might be dropped

Controlled Delay (CoDel) to tackle bufferbloat

measures the queuing delay for each packet, qdelp

Ndrop is the cumulative number of drop events

every interval (default is 100 ms), while dequeuing p:

qdelp > target delay (5 ms) qdelp < target delay

p is dropped p is dequed
Ndrop + + Ndrop = 0

interval= interval√
Ndrop

interval= 100 ms

7/21 Revisiting Old Friends: CoDel vs. RED 2014 7 / 21

Simulating the bufferbloat in ns-2

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

8/21 Revisiting Old Friends: CoDel vs. RED 2014 8 / 21

Simulating the bufferbloat in ns-2

Topology and traffic

Topology

delay Dw, capacitiy Cw

0

1

2 3

4

5

Pappl pareto applications

Transmission of B bytes with FTP

delay Dc, capacity Cc

Traffic

Pappl applications transmit a file (size generated following a Pareto
law): consistent with the distribution of the flow size measured in the
Internet. This traffic is injected to dynamically load the network.

FTP transmission of B bytes to understand the protocols impacts.
9/21 Revisiting Old Friends: CoDel vs. RED 2014 9 / 21

Simulating the bufferbloat in ns-2

Topology and traffic

Topology

delay Dw, capacitiy Cw

0

1

2 3

4

5

Pappl pareto applications

Transmission of B bytes with FTP

delay Dc, capacity Cc

Traffic

Pappl applications transmit a file (size generated following a Pareto
law): consistent with the distribution of the flow size measured in the
Internet. This traffic is injected to dynamically load the network.

FTP transmission of B bytes to understand the protocols impacts.
9/21 Revisiting Old Friends: CoDel vs. RED 2014 9 / 21

Simulating the bufferbloat in ns-2

Network and application characteristics

Finding central link capacities, Cc , causing Bufferbloat (Pappl = 100,
Cw = 10 Mbps)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

Q
u

e
u

e
 s

iz
e

 [
p

k
t]

Time [s]

Capacity 1Mbps
Capacity 1.25Mbps

Capacity 1.5Mbps

Capacity 2Mbps
Capacity 5Mbps

Selecting capacity, Papp and buffer size

Cc = 1 Mbps ⇒ constant buffering

Papp = 100

buffer sizes: 1) � BDP (q = 10), 2) ' BDP (q = 45), 3) � BDP
(q = 127), 4) q =∞10/21 Revisiting Old Friends: CoDel vs. RED 2014 10 / 21

Simulating the bufferbloat in ns-2

Network and application characteristics

Finding central link capacities, Cc , causing Bufferbloat (Pappl = 100,
Cw = 10 Mbps)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

Q
u

e
u

e
 s

iz
e

 [
p

k
t]

Time [s]

Capacity 1Mbps
Capacity 1.25Mbps

Capacity 1.5Mbps

Capacity 2Mbps
Capacity 5Mbps

Selecting capacity, Papp and buffer size

Cc = 1 Mbps ⇒ constant buffering

Papp = 100

buffer sizes: 1) � BDP (q = 10), 2) ' BDP (q = 45), 3) � BDP
(q = 127), 4) q =∞10/21 Revisiting Old Friends: CoDel vs. RED 2014 10 / 21

Impact of AQM with CUBIC and VEGAS

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

11/21 Revisiting Old Friends: CoDel vs. RED 2014 11 / 21

Impact of AQM with CUBIC and VEGAS

Drop ratio vs. queuing delay

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

D
ro

p
 r

a
ti
o

 p
ro

b
a
b
ili

ty

Queuing delay [s]

queue 10 (cyan)
queue 45 (yellow)
queue 125 (black)

unlimited queue (orange)

(a) DropTail

0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: TCP CUBIC: Drop ratio versus queuing delay (TCP Vegas shows the
same behaviour)

Interpretation

introduction of RED or CoDel ⇒ drop events whatever the queue size

with DropTail, the queuing delay is maximised by the size of the queue

queuing delay is between 0.01 s and 0.1 s with CoDel

queuing delay is between 0.1 s and 0.5 s with RED

12/21 Revisiting Old Friends: CoDel vs. RED 2014 12 / 21

Impact of AQM with CUBIC and VEGAS

Drop ratio vs. queuing delay

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

D
ro

p
 r

a
ti
o

 p
ro

b
a
b
ili

ty

Queuing delay [s]

queue 10 (cyan)
queue 45 (yellow)
queue 125 (black)

unlimited queue (orange)

(a) DropTail

0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: TCP CUBIC: Drop ratio versus queuing delay (TCP Vegas shows the
same behaviour)

Interpretation

introduction of RED or CoDel ⇒ drop events whatever the queue size

with DropTail, the queuing delay is maximised by the size of the queue

queuing delay is between 0.01 s and 0.1 s with CoDel

queuing delay is between 0.1 s and 0.5 s with RED

12/21 Revisiting Old Friends: CoDel vs. RED 2014 12 / 21

Impact of AQM with CUBIC and VEGAS

VEGAS and CUBIC with DropTail

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

T
h

ro
u

g
h

p
u

t
 [

M
b

p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) VEGAS

0

0.2

0.4

0.6

0.8

1

 0.001 0.01 0.1 1 10

T
h

ro
u

g
h

p
u

t
 [

M
b

p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(b) CUBIC

Figure: DropTail: Achieved throughput versus queuing delay for varying buffer
sizes

Interpretation

DropTail and VEGAS: throughput decreases when the queue size
increases. When the queue is large, VEGAS reacts to queuing delay
increases.

DropTail and CUBIC: throughput increases with larger queues. The
larger the queue, the bigger the queueing delay.

13/21 Revisiting Old Friends: CoDel vs. RED 2014 13 / 21

Impact of AQM with CUBIC and VEGAS

VEGAS and CUBIC with DropTail

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

T
h

ro
u

g
h

p
u

t
 [

M
b

p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) VEGAS

0

0.2

0.4

0.6

0.8

1

 0.001 0.01 0.1 1 10

T
h

ro
u

g
h

p
u

t
 [

M
b

p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(b) CUBIC

Figure: DropTail: Achieved throughput versus queuing delay for varying buffer
sizes

Interpretation

DropTail and VEGAS: throughput decreases when the queue size
increases. When the queue is large, VEGAS reacts to queuing delay
increases.

DropTail and CUBIC: throughput increases with larger queues. The
larger the queue, the bigger the queueing delay.

13/21 Revisiting Old Friends: CoDel vs. RED 2014 13 / 21

Impact of AQM with CUBIC and VEGAS

VEGAS with RED or CoDel

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

T
h
ro

u
g
h
p
u
t

 [
M

b
p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) DropTail

0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: VEGAS w/ AQM: Achieved throughput versus queuing delay

Interpretation

the queuing delay is between 0.01 s and 0.1 s with CoDel

the queuing delay is between 0.1 s and 0.5 s with RED

the throughput is the same whatever the choice of the AQM is.

14/21 Revisiting Old Friends: CoDel vs. RED 2014 14 / 21

Impact of AQM with CUBIC and VEGAS

VEGAS with RED or CoDel

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

T
h
ro

u
g
h
p
u
t

 [
M

b
p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) DropTail

0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: VEGAS w/ AQM: Achieved throughput versus queuing delay

Interpretation

the queuing delay is between 0.01 s and 0.1 s with CoDel

the queuing delay is between 0.1 s and 0.5 s with RED

the throughput is the same whatever the choice of the AQM is.

14/21 Revisiting Old Friends: CoDel vs. RED 2014 14 / 21

Impact of AQM with CUBIC and VEGAS

CUBIC with RED or CoDel

0

0.2

0.4

0.6

0.8

1

 0.001 0.01 0.1 1 10

T
h
ro

u
g
h
p
u
t

 [
M

b
p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) DropTail

 0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

 0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: CUBIC w/ AQM: Achieved throughput versus queuing delay

Interpretation

the queuing delay is between 0.01 s and 0.1 s with CoDel

the queuing delay is between 0.1 s and 0.5 s with RED

the throughput is larger with RED (up to 0.75 Mbps) than with
CoDel (up to 0.45 Mbps)

15/21 Revisiting Old Friends: CoDel vs. RED 2014 15 / 21

Impact of AQM with CUBIC and VEGAS

CUBIC with RED or CoDel

0

0.2

0.4

0.6

0.8

1

 0.001 0.01 0.1 1 10

T
h
ro

u
g
h
p
u
t

 [
M

b
p
s
]

Queuing delay [s]

Queue: 10
Queue: 45

Queue: 125
Queue: 1000000000

(a) DropTail

 0.001 0.01 0.1 1 10

Queuing delay [s]

(b) RED

 0.001 0.01 0.1 1 10

Queuing delay [s]

(c) CoDel

Figure: CUBIC w/ AQM: Achieved throughput versus queuing delay

Interpretation

the queuing delay is between 0.01 s and 0.1 s with CoDel

the queuing delay is between 0.1 s and 0.5 s with RED

the throughput is larger with RED (up to 0.75 Mbps) than with
CoDel (up to 0.45 Mbps)

15/21 Revisiting Old Friends: CoDel vs. RED 2014 15 / 21

Impact of AQM with CUBIC and VEGAS

Early conclusions

CoDel is a good candidate to reduce latency

RED may reduce the latency as well

RED allows to transmit more traffic and better exploit the capacity of
the bottleneck

⇒ a better trade-off might exist between latency reduction and more
efficient capacity use than the one of CoDel

16/21 Revisiting Old Friends: CoDel vs. RED 2014 16 / 21

Application Delays and Goodputs

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

17/21 Revisiting Old Friends: CoDel vs. RED 2014 17 / 21

Application Delays and Goodputs

Application Delay

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Reno VegasCompoundCubic

P
a
c
k
e
t
d
e
la

y
 [
S

]

Transport protocol

(a) DropTail

Reno Vegas Compound Cubic

Transport protocol

(b) RED

Reno Vegas Compound Cubic

Transport protocol

(c) CoDel

Figure: Packet transmission times

Interpretation

RED and CoDel enable reduction of the latency compared to DropTail

CUBIC the packet transmission time is reduced by 87% with CoDel
and by 75% with RED

the median packet transmission time with CUBIC and CoDel is
115 ms compared to 226 ms with RED

latency is reduced by 44% when the congestion control is VEGAS
rather than CUBIC

18/21 Revisiting Old Friends: CoDel vs. RED 2014 18 / 21

Application Delays and Goodputs

Application Delay

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Reno VegasCompoundCubic

P
a
c
k
e
t
d
e
la

y
 [
S

]

Transport protocol

(a) DropTail

Reno Vegas Compound Cubic

Transport protocol

(b) RED

Reno Vegas Compound Cubic

Transport protocol

(c) CoDel

Figure: Packet transmission times

Interpretation

RED and CoDel enable reduction of the latency compared to DropTail

CUBIC the packet transmission time is reduced by 87% with CoDel
and by 75% with RED

the median packet transmission time with CUBIC and CoDel is
115 ms compared to 226 ms with RED

latency is reduced by 44% when the congestion control is VEGAS
rather than CUBIC

18/21 Revisiting Old Friends: CoDel vs. RED 2014 18 / 21

Application Delays and Goodputs

Application Goodput

 0

 1000

 2000

 3000

 4000

 5000

Reno VegasCompoundCubic

T
ra

n
s
m

is
s
io

n
 t
im

e
 [
S

]

Transport protocol

(a) DropTail

Reno Vegas Compound Cubic

Transport protocol

(b) RED

Reno Vegas Compound Cubic

Transport protocol

(c) CoDel

Figure: Time needed to transmit 10 MB

Interpretation

dropping events generated by RED do not impact this transmission
time much

with CUBIC, introducing RED increases the median transmission time
of 10 MB by 5% compared to DropTail

with CUBIC, introducing CoDel results in an increase of 42% of this
transmission time.

19/21 Revisiting Old Friends: CoDel vs. RED 2014 19 / 21

Application Delays and Goodputs

Application Goodput

 0

 1000

 2000

 3000

 4000

 5000

Reno VegasCompoundCubic

T
ra

n
s
m

is
s
io

n
 t
im

e
 [
S

]

Transport protocol

(a) DropTail

Reno Vegas Compound Cubic

Transport protocol

(b) RED

Reno Vegas Compound Cubic

Transport protocol

(c) CoDel

Figure: Time needed to transmit 10 MB

Interpretation

dropping events generated by RED do not impact this transmission
time much

with CUBIC, introducing RED increases the median transmission time
of 10 MB by 5% compared to DropTail

with CUBIC, introducing CoDel results in an increase of 42% of this
transmission time.

19/21 Revisiting Old Friends: CoDel vs. RED 2014 19 / 21

Discussion

Table of content

1 Context and objectives

2 RED and CoDel

3 Simulating the bufferbloat in ns-2

4 Impact of AQM with CUBIC and VEGAS

5 Application Delays and Goodputs

6 Discussion

20/21 Revisiting Old Friends: CoDel vs. RED 2014 20 / 21

Discussion

Deployment of CoDel and RED

AQM: a solution to tackle the bufferbloat that SHOULD be deployed.
RED and CoDel enable to reduce the latency: in our simulations,
CoDel reduced the latency by 87% and RED by 75%
a trade-off must be found between reducing the latency and degrading
the end-to-end performance: CoDel increased the time needed to
transmit 10 MB by 42%, while RED only introduced a 5% increase
deployment issues of RED: RED was not tuned on because it is hard
to configure for a given network. Adaptive RED (proposed after
Gentle RED) has less deployment issues but was not deployed
deployment issues with CoDel: in a document published by
CableLabs, the authors explain that they had to adjust CoDel’s target
value to account for MAC/PHY delays even for packets reaching an
empty queue. There is a need for a large parameters sensitivity
consider the intended traffic to be carried: as an example, conjoint
deployment of LEDBAT and AQM is a problem as this protocol would
not be ”low-than-best-effort” anymore.

Conclusion: resolving bufferbloat with AQM strategies

find a trade-off between reducing latency and using the whole
available capacity

consider deployment issues

21/21 Revisiting Old Friends: CoDel vs. RED 2014 21 / 21

Discussion

Deployment of CoDel and RED

AQM: a solution to tackle the bufferbloat that SHOULD be deployed.
RED and CoDel enable to reduce the latency: in our simulations,
CoDel reduced the latency by 87% and RED by 75%
a trade-off must be found between reducing the latency and degrading
the end-to-end performance: CoDel increased the time needed to
transmit 10 MB by 42%, while RED only introduced a 5% increase
deployment issues of RED: RED was not tuned on because it is hard
to configure for a given network. Adaptive RED (proposed after
Gentle RED) has less deployment issues but was not deployed
deployment issues with CoDel: in a document published by
CableLabs, the authors explain that they had to adjust CoDel’s target
value to account for MAC/PHY delays even for packets reaching an
empty queue. There is a need for a large parameters sensitivity
consider the intended traffic to be carried: as an example, conjoint
deployment of LEDBAT and AQM is a problem as this protocol would
not be ”low-than-best-effort” anymore.

Conclusion: resolving bufferbloat with AQM strategies

find a trade-off between reducing latency and using the whole
available capacity

consider deployment issues

21/21 Revisiting Old Friends: CoDel vs. RED 2014 21 / 21

Discussion

Deployment of CoDel and RED

AQM: a solution to tackle the bufferbloat that SHOULD be deployed.
RED and CoDel enable to reduce the latency: in our simulations,
CoDel reduced the latency by 87% and RED by 75%
a trade-off must be found between reducing the latency and degrading
the end-to-end performance: CoDel increased the time needed to
transmit 10 MB by 42%, while RED only introduced a 5% increase
deployment issues of RED: RED was not tuned on because it is hard
to configure for a given network. Adaptive RED (proposed after
Gentle RED) has less deployment issues but was not deployed
deployment issues with CoDel: in a document published by
CableLabs, the authors explain that they had to adjust CoDel’s target
value to account for MAC/PHY delays even for packets reaching an
empty queue. There is a need for a large parameters sensitivity
consider the intended traffic to be carried: as an example, conjoint
deployment of LEDBAT and AQM is a problem as this protocol would
not be ”low-than-best-effort” anymore.

Conclusion: resolving bufferbloat with AQM strategies

find a trade-off between reducing latency and using the whole
available capacity

consider deployment issues

21/21 Revisiting Old Friends: CoDel vs. RED 2014 21 / 21

Discussion

Deployment of CoDel and RED

AQM: a solution to tackle the bufferbloat that SHOULD be deployed.
RED and CoDel enable to reduce the latency: in our simulations,
CoDel reduced the latency by 87% and RED by 75%
a trade-off must be found between reducing the latency and degrading
the end-to-end performance: CoDel increased the time needed to
transmit 10 MB by 42%, while RED only introduced a 5% increase
deployment issues of RED: RED was not tuned on because it is hard
to configure for a given network. Adaptive RED (proposed after
Gentle RED) has less deployment issues but was not deployed
deployment issues with CoDel: in a document published by
CableLabs, the authors explain that they had to adjust CoDel’s target
value to account for MAC/PHY delays even for packets reaching an
empty queue. There is a need for a large parameters sensitivity
consider the intended traffic to be carried: as an example, conjoint
deployment of LEDBAT and AQM is a problem as this protocol would
not be ”low-than-best-effort” anymore.

Conclusion: resolving bufferbloat with AQM strategies

find a trade-off between reducing latency and using the whole
available capacity

consider deployment issues

21/21 Revisiting Old Friends: CoDel vs. RED 2014 21 / 21

Appendix

Appendix

Appendix

On CoDel’s target value:1

The default target value is 5 ms, but this value SHOULD be
tuned to be at least the transmission time of a single
MTU-sized packet at the prevalent egress link speed (which
for e.g. 3 Mbps and MTU 1500 is ∼15 ms).

On LEDBAT not being LBE over AQMs:2

[. . .] RED invalidates LEDBAT low priority [with] similar
throughput of TCP and LEDBAT, both at flow and
aggregate levels

1T. Hoeiland-Joergensen et al. FlowQueue-CoDel. Internet-Draft
draft-hoeiland-joergensen-aqm-fq-codel-00.txt. Mar. 2014. url:
http://www.rfc-editor.org/internet-drafts/draft-hoeiland-joergensen-

aqm-fq-codel-00.txt, sec. 5.1.2.
2Y. Gong et al. “Interaction or Interference: Can AQM and Low Priority Congestion

Control Successfully Collaborate?” In: CoNEXT 2012. Nice, France, 2012, pp. 25–26.
doi: 10.1145/2413247.2413263. url: http://conferences.sigcomm.org/co-
next/2012/eproceedings/student/p25.pdf, sec. 2.

http://www.rfc-editor.org/internet-drafts/draft-hoeiland-joergensen-aqm-fq-codel-00.txt
http://www.rfc-editor.org/internet-drafts/draft-hoeiland-joergensen-aqm-fq-codel-00.txt
http://dx.doi.org/10.1145/2413247.2413263
http://conferences.sigcomm.org/co-next/2012/eproceedings/student/p25.pdf
http://conferences.sigcomm.org/co-next/2012/eproceedings/student/p25.pdf

	Context and objectives
	RED and CoDel
	Simulating the bufferbloat in ns-2
	Impact of AQM with CUBIC and VEGAS
	Application Delays and Goodputs
	Discussion
	Appendix
	Appendix

