

Endpoint-Transparent Multipath in Software Defined Networks Master Thesis

Dario Banfi

February 3, 2016

Chair for Network Architectures and Services
Department of Informatics
Technische Universität München

Introduction & Motivation

Goals

Methodology

Scheduling Reordering Monitoring

Architecture

Evaluation MPTCP Comparison Demo

Contribution

Conclusion

Introduction & Motivation

Multipath Forwarding is a L2/L3 strategy where next-hop packet forwarding to a destination can occur over multiple paths.

Advantages:

- Aggregated Path Throughput
- Load Sharing
- Connection Resiliency

Introduction & Motivation

The multipath approach is used in:

- Transport-Layer Multipath Protocols
 - Multipath TCP (MPTCP) and CMT-SCTP
 - Endpoint-support is necessary
 - Requires multihomed hosts
- In-network Multipath:
 - ECMP, Load-Balancing Techniques
 - Multipath done per-flow
 - No bandwidth aggregation and static configuration

Goals

The goals of the research were the following:

- Use multipath forwarding to provide aggregated path bandwidth
- Endpoint-transparent solution
- Easily deployable into current networks
 - → Software Defined Networking
 - → Open vSwitch

Methodology Scheduling

- A Multipath Scheduling Algorithm decides how to forward packets over a set of paths.
- Weighted Round Robin
 - It allocates traffic proportionally to the paths' capacities thanks to weight parameters
 - Sends packet bursts of variable size over the available paths
 - Bursts of packets reduce the probability of reordering
- Implemented in Open vSwitch and configurable by flow rules issued by the controller

```
match: protocol, source=src, destination=dst
action: weight: 10, output: port1 weight: 10, output: port2
```


Methodology Scheduling

Multipath Goodput for combined 20 Mb/s Bandwidth

Methodology Reordering

- Packet reordering causes critical performance degradation, especially on TCP connections
- Solution: Reordering Buffer in the network hardware
 - Reorders packets based on their TCP Sequence Number
 - Reduces unnecessary retransmission and sending rate limitations
 - Best-effort approach
- Implemented in Open vSwitch and configurable by the controller for specific flows

```
match: protocol, source=src, destination=dst
```

action: reorder, output:port

Methodology Reordering

Multipath performance with two paths of 10 Mb/s

Methodology Monitoring

- Scheduler's path weights and reordering rules must be properly configured
- Weights that do not reflect the path capacities will cause worse performance than single-path!
- Necessity of accurate Network Monitoring
 - Performed by the Controller with active and passive Measurements
 - Latency and Bandwidth Measurements between SDN Switches
 - Path characteristics are used to configure multipath forwarding tables

- Topology Discovery Component inserts the switches into a graph structure
- Edges of the graph have latency and bandwidth costs
- A Max-Flow algorithm is used to set up forwarding tables
- Adaptive reconfiguration to failures/congestion

Evaluation MPTCP Comparison

Evaluation Live Demo (Approximately 120 seconds)

This demo will show:

- Increased Multipath Throughput
- Controller's path setup and dynamic reconfiguration
- Drawbacks of congestion in a sub-path

The steps will be the following:

- Stream Video Single-Path
- 2. Controller sets up Multipath Forwarding
- 3. Congestion in a sub-path
- 4. Controller readapts forwarding automatically

Contribution

- Analysis on optimal multipath parameters to maximize throughput and reduce out-of-order delivery
- Open vSwitch modification for packet-granularity scheduling
- Open vSwitch modification for TCP Reordering
- SDN Controller performing network monitoring and multipath forwarding rules computation
- Evaluation on Emulated Networks and Large-Scale Multihomed Testbed (NorNet)

Conclusion

- Increased throughput and resource utilization
- Adaptive reconfiguration
- + L2/L3 Capabilities
- + Endpoint-Transparent

But

- Network monitoring must be accurate to configure correctly multipath parameters
- Reordering Buffer is a performance bottleneck
- Increased complexity

Q & A

Thanks for the attention!

Dario Banfi dario.banfi@tum.de