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MPTCP’s default scheduler always fills up the CWND of all 
available subflows in ascending RTT order. 
•  This is harmful if the subflows have distinct RTT: HoL 
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•  Metric: Download Time 
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Multipath TCP Scheduler: 3G+WLAN 
•  Metric: Download Time 
•  Traffic: Web download, 6 concurrent connections, 3 web sites: 

- Wikipedia: 15 objects, 72 kiB 
- Amazon: 54 objects, 1 MiB 
- Huffington Post: 138 objects, 3.994 MiB 

•  Setup: CORE emulation with synthetic (UDP, TCP) background traffic 

 

 
MPTCP in 3G+WLAN provides marginal or no gain with heterogeneity. 
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We implement DAPS and OTIAS in the Linux kernel: 

•  Systematically evaluate their performance – emulation and real-network; 
•  Address implementation aspects; 
•  Propose BLEST - Blocking Estimation-based MPTCP Scheduler 



Measurement Setup: Emulation 
 

 

Setup: 

•  CORE emulation with a synthetic mix background traffic: 
•  UDP on/off and TCP rate-limited and bulk flows with distinct RTTs 

•  Bottleneck settings: 
•  WLAN: 25 Mbps, 25 ms, Loss=0.5 to 1%, Bottleneck queue: 100 p 
•  3G: 5 Mbps, 65 ms, Loss=0%, Bottleneck queue: 3750 p 

•  Socket buffer size*: 
•  WLAN+WLAN: 1024 KiB/2048 KiB 
•  3G+WLAN: 1024 KiB/2048 KiB 

 

 
 
 
 
 
 
* Socket buffer: 16 MiB for bulk transfers to evaluate aggregation 
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Multipath TCP: Bulk Traffic 

Metric: Goodput and average OFO queue size 
OTIAS: 

•  3G+WLAN: The estimation can discard the 3G path 
•  WLAN+WLAN: It lacks retransmission and it builds up send queues 

DAPS: 
•  3G+WLAN: The estimation never discards a subflow that can send 
•  WLAN+WLAN: It has retransmission, but it reacts after schedule runs 



Multipath TCP: Web Transfers 
Metric: Completion time and average OFO queue size 
 



DAPS vs OTIAS 
 OTIAS: 

•  Decisions on a per-packet basis, reacting fast with the network’s 
current state 

•  It builds up queues on the subflows with lowest RTTs, regardless  
of their CWND, not restricting the scheduler if the CWND is full 

•  It assumes symmetric forward delays (OWD = RTT/2) 
•  It does not apply scheduler reinjections (retransmissions) 

  

DAPS:  

•  DAPS is more complex, it requires more memory at run-time 
•  It builds schedules runs being unable to react to network changes 
•  It uses all subflows available, even if a certain subflow is weak 
•  It does not apply scheduler reinjections (retransmissions) 
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halving its CWND 

•  This mechanism is called penalisation and retransmission 
•  Raiciu, Costin, et al. How hard can it be? designing and implementing a 

deployable multipath TCP  
 

•  The idea it to reduce the contribution of the slow subflow, keeping 
its CWND artificially low, reacting on receive window limitation 

•  In other words, after a penalisation  the CWND of the slow subflow will 
start growing again, until blocking reoccurs. 



Blocking Estimation: BLEST 
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay 
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Blocking Estimation: BLEST 
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay 

•  It is uncertain how many segments to sent on subflow 2, which has a 
higher delay 

•  While subflow 2’s window could accommodate more data, only 
segments 11…12 are allocated, due to BLEST’s blocking prediction* 

•  Then, subflow 1 can advance with segments 13…20, because 0…10 
were acked 

 
 
 
* Here, minRTT would allocate as much data as fits into subflow 2’s window given its CWND 
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Blocking Estimation: BLEST 
HoL-blocking would occur if the fast subflow (F) cannot send due to 
lack of space in the send window because of the slow subflow (S) 

•  Therefore, BLEST estimates the amount of data X that will be sent on F 
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•  If                                                            , the next segment will not be sent 
on S. Instead, the scheduler will wait for F to become available 

•  While minRTT will always opt to use an available subflow, BLEST is 
able to skip a subflow, reducing the number of retransmissions triggered 

•  When the scheduler calculates X inaccurately, the     is introduced to 
correct the estimates and it is dynamically adapted:     is initially set to 1 



Real-Network Evaluation 

•  vms from five commercial cloud service providers (2x in Europe, 1x in 
North America and 2x in Asia) connected via 100 Mbps links  

•  Lab network connected to a research gigabit network 

•  Background traffic composed of UDP on/off and TCP flows against the 
server machine 

 



Multipath TCP: Bulk Traffic 

Metric: Goodput, retransmissions by penalisation and retransmission and 
average OFO queue size 



Multipath TCP: Web Transfers 

Metric: Completion time and average OFO queue size 

 
MPTCP’s performance with BLEST is closer to that of the WLAN path, 
performing only 3% worse than TCP on the best path (WLAN). 
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We highlighted the limitations of such reactive approach systematically 
evaluating different applications in both WLAN+WLAN and 3G+WLAN 
scenarios with emulations and real-network experiments 

•  We implemented and compared minRTT, DAPS and OTIAS 
•  With BLEST applications increased goodput, lowered completion 

time, reduced retransmissions and reduced receiver buffer size 
 

  



Questions? 

The implementation is open source and available for other researchers: 

https://bitbucket.org/blest_mptcp/nicta_mptcp 
 

 
 

http://ferlin.io --- ferlin@simula.no 
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DAPS 

A schedule is created to span the least 
common multiple (LCM) of the forward 
delays 

DAPS creates a schedule for the 
distribution of future segments for a 
scheduling run and follows this schedule 
until it is completed 



OTIAS 

When asked to schedule a new segment, 
OTIAS estimates its arrival time, and 
chooses the subflow with the shortest time. 

•  OTIAS decides which subflow to use on a per-packet  basis, however, it 
builds up queues in the subflows, which can be detrimental 
 

•  If a segment that had been sent is blocking the connection, queued packets 
will linger at the sender more than assumed, disturbing the created schedule 
 

•  No retransmission approach:  If a send queue exists for a subflow, as that 
segment would have to wait in the queue before being retransmitted 


