
BLEST: Blocking Estimation-based MPTCP Scheduler
for Heterogeneous Networks

Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

•  MPTCP closes the gap between multipath networks and single-path transport.
•  Improved resource utilization (bandwidth aggregation) and reliability.

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

•  MPTCP closes the gap between multipath networks and single-path transport.
•  Improved resource utilization (bandwidth aggregation) and reliability.

MPTCP
standard socket API

Scheduler
send queue

Coupled Congestion Control

TCPn TCP1 send recv

Application Application on top of TCP

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

•  MPTCP closes the gap between multipath networks and single-path transport.
•  Improved resource utilization (bandwidth aggregation) and reliability.

Application on top of TCP

Multipath Scheduler:
•  Default: minimum RTT

MPTCP
standard socket API

Scheduler
send queue

Coupled Congestion Control

TCPn TCP1 send recv

Application

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

•  MPTCP closes the gap between multipath networks and single-path transport.
•  Improved resource utilization (bandwidth aggregation) and reliability.

Application on top of TCP

Multipath Scheduler:
•  Default: minimum RTT

Coupled Congestion Control:
•  LIA, OLIA and Balia: Reno-based

MPTCP
standard socket API

Scheduler
send queue

Coupled Congestion Control

TCPn TCP1 send recv

Application

Multipath TCP: What is it?
•  TCP/IP is built around the notion of a single connection between hosts.

•  TCP connection: IP address + TCP port

•  MPTCP closes the gap between multipath networks and single-path transport.
•  Improved resource utilization (bandwidth aggregation) and reliability.

Application on top of TCP

Multipath Scheduler:
•  Default: minimum RTT

Coupled Congestion Control:
•  LIA, OLIA and Balia: Reno-based

MPTCP
standard socket API

Scheduler
send queue

Coupled Congestion Control

TCPn TCP1 send recv

Application

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

MPTCP Send Window

0 … 10

0 … 10

Subflow 1
Send Window

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

11…13

11…13

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

MPTCP Send Window

0 … 10

0 … 10

Subflow 1
Send Window

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

MPTCP’s default scheduler always fills up the CWND of all
available subflows in ascending RTT order.

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

11…13

11…13

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

MPTCP Send Window

0 … 10

0 … 10

Subflow 1
Send Window

Multipath TCP Scheduler: Overview

•  MPTCP’s default scheduler:

•  Minimum RTT (minRTT)
•  Not standardized nor specified at the IETF

The MPTCP scheduler first fills the window of the subflow with the lowest RTT
(sRTT), then data is sent on the subflow with the next higher sRTT, …

MPTCP’s default scheduler always fills up the CWND of all
available subflows in ascending RTT order.
•  This is harmful if the subflows have distinct RTT: HoL

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

11…13

11…13

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

MPTCP Send Window

0 … 10

0 … 10

Subflow 1
Send Window

Multipath TCP Scheduler: WLAN+WLAN
•  Metric: Download Time
•  Traffic: Web download, 6 concurrent connections, 3 web sites:

- Wikipedia: 15 objects, 72 kiB
- Amazon: 54 objects, 1 MiB
- Huffington Post: 138 objects, 3.994 MiB

•  Setup: CORE emulation with synthetic (UDP, TCP) background traffic

MPTCP in WLAN+WLAN provides gains with larger the downloads.

Multipath TCP Scheduler: 3G+WLAN
•  Metric: Download Time
•  Traffic: Web download, 6 concurrent connections, 3 web sites:

- Wikipedia: 15 objects, 72 kiB
- Amazon: 54 objects, 1 MiB
- Huffington Post: 138 objects, 3.994 MiB

•  Setup: CORE emulation with synthetic (UDP, TCP) background traffic

MPTCP in 3G+WLAN provides marginal or no gain with heterogeneity.

Multipath TCP Scheduler: References
Related work:

•  Delay-Aware Packet Scheduler (DAPS)
N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
DAPS: Intelligent delay-aware packet scheduling for multipath transport

•  Out-of-order Transmission for In-order Arrival Scheduler (OTIAS)
F. Yang, Q. Wang, and P. Amer, Out-of-order transmission for in-order arrival
scheduling policy for multipath TCP

Multipath TCP Scheduler: References
Related work:

•  Delay-Aware Packet Scheduler (DAPS)
N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
DAPS: Intelligent delay-aware packet scheduling for multipath transport

•  Out-of-order Transmission for In-order Arrival Scheduler (OTIAS)
F. Yang, Q. Wang, and P. Amer, Out-of-order transmission for in-order arrival
scheduling policy for multipath TCP

Both DAPS and OTIAS not extensively evaluated against MPTCP’s default:
•  Different test scenarios
•  Did not consider different traffic classes (web transfers, CBR or bulk)

Multipath TCP Scheduler: References
Related work:

•  Delay-Aware Packet Scheduler (DAPS)
N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
DAPS: Intelligent delay-aware packet scheduling for multipath transport

•  Out-of-order Transmission for In-order Arrival Scheduler (OTIAS)
F. Yang, Q. Wang, and P. Amer, Out-of-order transmission for in-order arrival
scheduling policy for multipath TCP

Both DAPS and OTIAS not extensively evaluated against MPTCP’s default:

•  Different test scenarios
•  Did not consider different traffic classes (web transfers, CBR or bulk)

We implement DAPS and OTIAS in the Linux kernel:

•  Systematically evaluate their performance – emulation and real-network;
•  Address implementation aspects;
•  Propose BLEST - Blocking Estimation-based MPTCP Scheduler

Measurement Setup: Emulation

Setup:

•  CORE emulation with a synthetic mix background traffic:
•  UDP on/off and TCP rate-limited and bulk flows with distinct RTTs

•  Bottleneck settings:
•  WLAN: 25 Mbps, 25 ms, Loss=0.5 to 1%, Bottleneck queue: 100 p
•  3G: 5 Mbps, 65 ms, Loss=0%, Bottleneck queue: 3750 p

•  Socket buffer size*:
•  WLAN+WLAN: 1024 KiB/2048 KiB
•  3G+WLAN: 1024 KiB/2048 KiB

* Socket buffer: 16 MiB for bulk transfers to evaluate aggregation

Multipath TCP: Bulk Traffic

Metric: Goodput and average OFO queue size
OTIAS:

•  3G+WLAN: The estimation can discard the 3G path
DAPS:

•  3G+WLAN: The estimation never discards a subflow that can send

Multipath TCP: Bulk Traffic

Metric: Goodput and average OFO queue size
OTIAS:

•  3G+WLAN: The estimation can discard the 3G path
•  WLAN+WLAN: It lacks retransmission and it builds up send queues

DAPS:
•  3G+WLAN: The estimation never discards a subflow that can send
•  WLAN+WLAN: It has retransmission, but it reacts after schedule runs

Multipath TCP: Web Transfers
Metric: Completion time and average OFO queue size

DAPS vs OTIAS
 OTIAS:

•  Decisions on a per-packet basis, reacting fast with the network’s
current state

•  It builds up queues on the subflows with lowest RTTs, regardless
of their CWND, not restricting the scheduler if the CWND is full

•  It assumes symmetric forward delays (OWD = RTT/2)
•  It does not apply scheduler reinjections (retransmissions)

DAPS:

•  DAPS is more complex, it requires more memory at run-time
•  It builds schedules runs being unable to react to network changes
•  It uses all subflows available, even if a certain subflow is weak
•  It does not apply scheduler reinjections (retransmissions)

Recapitulating: minRTT
•  For each new segment, the minRTT, chooses the subflow with

lowest RTT among all subflows with window space

Recapitulating: minRTT
•  For each new segment, the minRTT, chooses the subflow with

lowest RTT among all subflows with window space.

•  If MPTCP detects a full send window, it retransmits the segment
blocking the fastest subflow and penalises the slow subflow,
halving its CWND

•  This mechanism is called penalisation and retransmission
•  Raiciu, Costin, et al. How hard can it be? designing and implementing a

deployable multipath TCP

Recapitulating: minRTT
•  For each new segment, the minRTT, chooses the subflow with

lowest RTT among all subflows with window space.

•  If MPTCP detects a full send window, it retransmits the segment
blocking the fastest subflow and penalises the slow subflow,
halving its CWND

•  This mechanism is called penalisation and retransmission
•  Raiciu, Costin, et al. How hard can it be? designing and implementing a

deployable multipath TCP

•  The idea it to reduce the contribution of the slow subflow, keeping
its CWND artificially low, reacting on receive window limitation

•  In other words, after a penalisation the CWND of the slow subflow will
start growing again, until blocking reoccurs.

Blocking Estimation: BLEST
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

Blocking Estimation: BLEST
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay

•  It is uncertain how many segments to sent on subflow 2, which has a
higher delay

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

Blocking Estimation: BLEST
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay

•  It is uncertain how many segments to sent on subflow 2, which has a
higher delay

•  While subflow 2’s window could accommodate more data, only
segments 11…12 are allocated, due to BLEST’s blocking prediction*

* Here, minRTT would allocate as much data as fits into subflow 2’s window given its CWND

MPTCP
Send Window

13…20

13…20

Subflow 1
Send Window

11…12

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

Blocking Estimation: BLEST
•  Segments 0 …10 are in flight on subflow 1, the one with lowest delay

•  It is uncertain how many segments to sent on subflow 2, which has a
higher delay

•  While subflow 2’s window could accommodate more data, only
segments 11…12 are allocated, due to BLEST’s blocking prediction*

•  Then, subflow 1 can advance with segments 13…20, because 0…10
were acked

* Here, minRTT would allocate as much data as fits into subflow 2’s window given its CWND

MPTCP
Send Window

13…20

13…20

Subflow 1
Send Window

11…12

MPTCP Send Window

0 … 10

Subflow 2
Send Window

0 … 10

Subflow 1
Send Window

?

4

24…32

Subflow 1
Send Window

21…23	

Subflow 2
Send Window

MPTCP
Send Window

24…32 21…23	

Blocking Estimation: BLEST
HoL-blocking would occur if the fast subflow (F) cannot send due to
lack of space in the send window because of the slow subflow (S)

•  Therefore, BLEST estimates the amount of data X that will be sent on F
during RTTS , and check whether this fits into MPTCP’s send window

Blocking Estimation: BLEST
HoL-blocking would occur if the fast subflow (F) cannot send due to
lack of space in the send window because of the slow subflow (S)

•  Therefore, BLEST estimates the amount of data X that will be sent on F
during RTTS , and check whether this fits into MPTCP’s send window

•  If , the next segment will not be sent
on S. Instead, the scheduler will wait for F to become available

•  While minRTT will always opt to use an available subflow, BLEST is
able to skip a subflow, reducing the number of retransmissions triggered

Blocking Estimation: BLEST
HoL-blocking would occur if the fast subflow (F) cannot send due to
lack of space in the send window because of the slow subflow (S)

•  Therefore, BLEST estimates the amount of data X that will be sent on F
during RTTS , and check whether this fits into MPTCP’s send window

•  If , the next segment will not be sent
on S. Instead, the scheduler will wait for F to become available

•  While minRTT will always opt to use an available subflow, BLEST is
able to skip a subflow, reducing the number of retransmissions triggered

•  When the scheduler calculates X inaccurately, the is introduced to
correct the estimates and it is dynamically adapted: is initially set to 1

Real-Network Evaluation

•  vms from five commercial cloud service providers (2x in Europe, 1x in
North America and 2x in Asia) connected via 100 Mbps links

•  Lab network connected to a research gigabit network

•  Background traffic composed of UDP on/off and TCP flows against the
server machine

Multipath TCP: Bulk Traffic

Metric: Goodput, retransmissions by penalisation and retransmission and
average OFO queue size

Multipath TCP: Web Transfers

Metric: Completion time and average OFO queue size

MPTCP’s performance with BLEST is closer to that of the WLAN path,
performing only 3% worse than TCP on the best path (WLAN).

Conclusion

Path heterogeneity is rather the rule than the exception with MPTCP

•  Path heterogeneity results in HoL-blocking at the receiver
undermining MPTCP’s overall performance

•  To overcome path heterogeneity, MPTCP follows a reactive
approach, the penalisation and retransmission mechanism

Conclusion

Path heterogeneity is rather the rule than the exception with MPTCP

•  Path heterogeneity results in HoL-blocking at the receiver
undermining MPTCP’s overall performance

•  To overcome path heterogeneity, MPTCP follows a reactive
approach, the penalisation and retransmission mechanism

We highlighted the limitations of such reactive approach systematically
evaluating different applications in both WLAN+WLAN and 3G+WLAN
scenarios with emulations and real-network experiments

•  We implemented and compared minRTT, DAPS and OTIAS
•  With BLEST applications increased goodput, lowered completion

time, reduced retransmissions and reduced receiver buffer size

Questions?

The implementation is open source and available for other researchers:

https://bitbucket.org/blest_mptcp/nicta_mptcp

http://ferlin.io --- ferlin@simula.no

Backup Slides

DAPS

A schedule is created to span the least
common multiple (LCM) of the forward
delays

DAPS creates a schedule for the
distribution of future segments for a
scheduling run and follows this schedule
until it is completed

OTIAS

When asked to schedule a new segment,
OTIAS estimates its arrival time, and
chooses the subflow with the shortest time.

•  OTIAS decides which subflow to use on a per-packet basis, however, it
builds up queues in the subflows, which can be detrimental

•  If a segment that had been sent is blocking the connection, queued packets
will linger at the sender more than assumed, disturbing the created schedule

•  No retransmission approach: If a send queue exists for a subflow, as that
segment would have to wait in the queue before being retransmitted

