
Thesis for the degree of Master of Science in
Complex Adaptive Systems

Mesoscopic Management of a Fleet of

Cybercars at a Crossroads

Olivier Mehani

Department of Applied Physics
Chalmers University of Technology

Göteborg, Sweden, 2007

Mesoscopic Management of a Fleet of Cybercars at a Crossroads

OLIVIER MEHANI

c© OLIVIER MEHANI

Department of Applied Physics
Chalmers University of Technology
412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 1000

Chalmers reproservice
Göteborg, Sweden, 2007

Abstract

In the context of driverless automatic road vehicles, one interesting and non-trivial problem is
that of the passing of a crossroads. At an intersection between two roads, the risk of collision
is much higher due to the presence of other vehicles not going in the same direction, and
potentially crossing each other’s path.

It is necessary to find safe algorithms allowing every vehicle to pass this sensitive point
without colliding. Moreover, it is important, while doing so, to keep efficiency in mind, for the
vehicles not to wait forever before entering and passing the intersection. Every vehicle must
pass the crossroad as fast as the safe possibilities allow.

This 6 months internship, done with the Imara team, tried to come up with an efficient
algorithm for crossroads passing. A simulator has been written, giving the possibility to test
various algorithms and efficiency comparisons have been made in order to determine which
algorithm was the most promising, and where were the behaviors that could still be improved.

Finally, an algorithm based on a reservation of critical points has seemed to be the most
interesting. Details about its inner working and implementation are given, as well as prelimi-
nary results.

Acknowledgment

I would like to thank Inria Rocquencourt for allowing me to work with the Imara team which
enabled me to discover and solve some exciting problems and work in the fields I’m most
interested in.

I am particularly grateful to Arnaud de la Fortelle, my supervisor in the team, who
was always ready to answer my questions and gave me valuable pieces of advice concerning
the way to steer my work, while still leaving me in control.

I also would like to thank Laurent Bouraoui, Armand Yvet and Rodrigo Benenson
who, thanks to their availability and willingness to answer my questions, allowed me to quickly
and fully integrate in the team.

Finally, I do not forget everybody else in the team whom I did not mention. It’s been
very interesting to work, for my internship, in this team, and I’m very happy to be able to
continue working with them as an engineer.

Contents

1 Introduction 1

2 Presentation of Imara 3
2.1 Inria . 3
2.2 Short timeline . 4

2.2.1 Praxitèle . 4
2.2.2 Imara . 4
2.2.3 LaRA . 5

2.3 Research fields . 5
2.4 Platforms . 6

2.4.1 C3s . 6
2.4.2 CyCabs . 6

3 Crossroads passing algorithms 9
3.1 Problem statement . 9

3.1.1 Layered control . 9
3.1.2 Crossroads . 10
3.1.3 Desired output . 10

3.2 Preexisting works . 11
3.2.1 Traffic lights control . 11
3.2.2 Multiagent-based reservations system 11

3.3 Yet another reservation system . 12
3.3.1 2-dimensional traces on the crossroads 12
3.3.2 Determining the resources to share . 12
3.3.3 Details of the algorithm . 13
3.3.4 Some comments about the algorithm . 17

4 Simulation and results 18
4.1 Simulator . 18

4.1.1 Simplifying assumptions . 18
4.1.2 Technical choices . 18
4.1.3 Architecture . 18

4.2 Results . 23

5 Conclusion and future works 27

i

CONTENTS

A Model of a car and its trajectory I
A.1 Dynamic model of a cybercar . I
A.2 Acceptable traces model . I

A.2.1 Dubin’s curves . I
A.2.2 Clothoids . I
A.2.3 Generating traces . II

ii

Chapter 1

Introduction

The work in the Imara team has been done in the context of driverless cybercars called
CyCabs (Fig. 1.1). These fully automated vehicles are equipped with several types of sensors
(cameras, lasers, . . .) and communication devices (mostly WiFi links) which enables them to
sense their environment and exchange information both with each other and with a potential
intelligent road infrastructure.

Figure 1.1: Different types of cybercars: two CyCabs and one AGV. Reproduced with permission
from Imara, courtesy of Rodrigo Benenson.

In this context, the situation of an intersection between two roads causes an increase in
the difficulty to avoid collisions. In quite a dense traffic uniquely composed of CyCabs, the
vehicles will need to pass on a part of the road which is shared between vehicles not going in
the same direction (the crossroads).

It is necessary, for each vehicle, to be able to compute a trajectory (that is the speed to

1

Chapter 1. Introduction

achieve along a determined path) in order never to be at the same place as another vehicle.
To do so, several algorithms have been thought of and compared to finally try and achieve
the best efficiency while ensuring that no collision was possible.

In the following, the problem will be developed in much more details, then a survey of the
pre-existing works in the field will be summed up, before going into depths about a reservation
algorithm which proved to give the best results among those studied. Some simulation results
will also be added to support the argument.

2

Chapter 2

Presentation of Imara

2.1 Inria

Inria, the French National Institute for Research in Computer Science and Control, has been
created in Rocquencourt, near Paris, in 1967. It is a public scientific and technical research
center managed by the Ministère de l’Éducation Nationale and the Ministère de l’Industrie.

Among the activities of the research unit are experimental systems, fundamental and
applied research, technologies transferts, organization of international scientific exchanges
and spreading of knowledge and know-how.

Computer scientists, mathematicians, and automaticians work on research projects about
five main themes subdivided into several axes:

Comunicant systems

• Distributed systems;

• Networks and telecommunications;

• Embedded systems;

• Architecture and compilation.

Cognitive systems

• Statistical modelization and learning;

• Images and videos: perception, indexing and communication;

• Multimedia data: interpretation and human-machine interaction;

• Image synthesis and virtual reality.

Symbolic systems

• Software safety and reliability;

• Algebraic and geometric structures, algorithms;

• Contents and language organization.

Numerical systems

• Complex systems;

3

Chapter 2. Presentation of Imara

• Clusters and high-performance computing;

• Optimization and stochastic or highly dimensional problems;

• Modelisation, simulation and numerical analysis.

Biological systems

• Modelisation and simulation for biology and healthcare.

Since 1992, Inria is involved in important projects with industrial goals. These programs –
usually planned to take 3 or 5 years - are led in partnerships with industrial actors and users
of the information technologies. With several research teams participating in each of these
actions, they create significant coordination and collaboration opportunities between research
projects and technology companies.

Inria Rocquencourt is one out of six research units. 39 research teams, for a total of
roughly 800 people, are hosted on the site. One of these projects is Imara (Informatique,
Mathématiques et Automatique pour la Route Automatisée or, roughly, Computer Science,
Mathematics and Automation for the Automated Road).

2.2 Short timeline

2.2.1 Praxitèle

The Praxitèle programme was started in 1993 as a partnership between Inria, Inrets and
several companies like Renault, EDF, Dassault Electronique and CGFTE – a mass transit
operator which was also the project leader. The aim was to develop and evaluate a new
individual public transport based on self-service small electric vehicles.

In this project, Inria has been responsible for the modeling and the real time management
of the system. Inria has also developed a new type of electric automated vehicle specific for this
application: the CyCab. The vehicle can be operated safely, be it in semi or fully automatic
mode.

The scientific director for the Inria team was Michel Parent.

2.2.2 Imara

At the end of the Praxitèle programme, in 1997, the Imara project was started, at Inria Roc-
quencourt, by Michel Parent, with the objective to continue the work which has been started
with Praxitèle and provide safer, more efficient and more comfortable intelligent transporta-
tion systems, mostly via automatization.

Increased safety is based on four approaches: driver monitoring and warning, partial control
of the vehicle in case of emergency, total control of some functions, or even of all the
vehicle. This is achieved by techniques providing services ranging from driver aid to full
driving automation.

Efficiency and comfort are increased by a better usage of the available resources (roads,
vehicles and energy). Works aiming at reducing the congestion of existing infrastructures
or proposing a multi-modal service where the classical automobile is only used wherever
a mass-transportation service does not exist allow to improve these factors.

4

Chapter 2. Presentation of Imara

Energy savings, also, is not directly achieved as part of the research work, but mostly by
promoting new and cleaner means of transportation.

Since 1997, the fields of interests of Imara have widened and the team now also focuses
on non-fully automated vehicles, with the same global objective in mind.

2.2.3 LaRA

Since December 2005, Imara and the CAOR robotic lab of the École des Mines are associated
in a joint research unit called LaRA – La Route Automatisée or “the Automated Road”.
Sharing the same goals in terms of integration and experimentation, these two labs – roughly
50 people – tightly collaborate.

The general philosophy is to assist the driver to improve road safety, comfort and efficiency
of the road networks. The long term objective is to totally remove the driver from the control
loop, at least in some specific maneuvers or infrastructures.

2.3 Research fields

Imara is a “horizontal” project at Inria. The project coordinates and transferts all the research
done at Inria which can be applied to the the concepts of the Automated Road. In particular,
the results of a number of Inria projects in the following domains are integrated:

Embedded systems

• command and control;

• safety and reliability.

Signal processing

• infrared or ultrasonic detection of obstacles;

• Laser reconstruction of the surrounding features;

• computer vision;

• etc.

Artificial intelligence

• decisions (potentially after negociation with peers);

• path and trajectory finding;

• navigation components.

Communications

• wireless links;

• mesh networks;

• dynamic topologies;

• IPv6 and mobility.

5

Chapter 2. Presentation of Imara

Figure 2.1: A CyCab (left) and a Citroën C3 (right), the two main platforms used at Imara.
Reproduced with permission from Imara, courtesy of Laurent Bouraoui.

2.4 Platforms

One of the key strengths of Imara is that the team possesses several vehicles equipped with
computer hardware. It is then possible to easily implement experiments and test both hard-
ware and software in real conditions instead of just relying on simulation results. Imara
currently uses two main development platforms (Fig. 2.1): Citroën C3 and CyCabs.

2.4.1 C3s

The C3 platform (Fig. 2.2 on the following page) is mostly used for applications aimed at
transmitting information to the driver, the infrastructure or other vehicles.

The vehicles are equipped with several computers. Information about the vehicle status
is obtained via the car’s CAN bus. The computers are used to acquire and process data
from the embedded sensing devices (cameras, Lasers, GPS receivers, . . .), establish short- or
long-distance network links using current technologies (wireless, GPRS,. . .) or run specific
resource-intensive applications like Adas-RP (Advanced Driver Assistance System) or other
navigation systems.

2.4.2 CyCabs

An original development of Inria’s research teams, the CyCab is an example of cybercar. This
electric vehicle is fully automated and equipped with two computers – one taking care of the
low level control of the wheels and overall dynamics of the vehicle, the other in charge of the
execution of higher level navigation algorithms.

6

Chapter 2. Presentation of Imara

Figure 2.2: The C3s’ hardware architecture. Reproduced with permission from Imara.

7

Chapter 2. Presentation of Imara

Figure 2.3: The CyCab’s initial hardware architecture. Reproduced with permission from Imara.

Various types of sensors (ultrasonic devices, stereo-cameras, infrared devices,. . .) in order
to sense their environment and provide the navigation algorithms with enough information
to safely decide which movements to achieve.

This internship’s motivations are mainly rooted with these vehicles in mind. However, it
is not impossible to later use the produced algorithms with any type of vehicle.

8

Chapter 3

Crossroads passing algorithms

3.1 Problem statement

3.1.1 Layered control

In a transportation system with fully autonomous vehicles (or cybercars), a lot of tasks have to
be executed to answer the demand of a customer to travel between two points. The framework
of this work is an approach consisting in decomposing the planning into three levels, each of
which using only a relevant subset of the information, thus reducing the complexity:

the macroscopic level, e.g. a city or a region;

the mesoscopic level, e.g. a city quarter;

the microscopic level, i.e. the surroundings of the cybercar.

At the macroscopic level, a path is computed. A path, is defined as a succession of edges
(road segments) in the graph description of the road network. This is the level of fleet and
roads management with a time scale ranging from half an hour to several hours.

At the mesoscopic level, paths are transmitted by the upper level and turned into tra-
jectories. A trajectory is a precise space-time curve that the cybercar has to follow. Typical
precisions are 10 cm and 1/10 s. The goal of this level is to produce trajectories for all
the cybercars circulating in a given area. These trajectories have to be safe, most notably
collision-free, but also efficient, i.e. deadlock-free.

At the microscopic level, the cybercar’s control moves along the trajectory and ensures
that none of these collisions which couldn’t have been foreseen at the higher levels occur.

In this thesis, the focus was put on the mesoscopic level. More precisely, the study is
presented on a simple crossroads (X junction). It has, however, been done with a much more
general setting in mind which the developed concepts are supposed to deal with.

One key element of these algorithms is the respect of the controllability constraints of the
vehicles (its dynamics, e.g. attainable speeds), for the actual vehicles to be able to follow the
generated trajectories. A second key element is the management of the shared resources, i.e.
the intersection.

9

Chapter 3. Crossroads passing algorithms

3.1.2 Crossroads

A crossroads is basically the intersection of two routes. Considering the most regular one, a
single vehicle already has the option of choosing between three directions (Fig. 3.1). Doing
so, the vehicle will have to occupy various contiguous places of the time-space of the cross-
roads. When more than one vehicle are willing to pass the crossroads at the same time, it is
increasingly hard to determine a safe schedule ensuring that there will be only one vehicle at
a given time-point, taking into account its physical dimensions.

Figure 3.1: A regular crossroads. Each vehicle entering it has three possibilities to get out.

More formally put, the problem is to attribute a shared resource (the crossroads) to each
of the vehicles for a given time period, while distributing this resource the most efficiently
possible in order not to reduce the speeds too much or even block the vehicles.

3.1.3 Desired output

Whatever the algorithm used to determine the scheduling, the expected output must be usable
by the cybercar, that is by its microscopic level. The data provided by this layer should thus
be composed of position and speed (or time) information. It is also necessary to have this
information in advance so that the microscopic level can plan the acceleration or deceleration
that may be needed.

The performance of the algorithms can be measured in terms of the average, minimum
and maximum time it took a vehicle to passe on the crossroads. Of course, these have to be
minimized. Another interesting criterion is the throughput of the crossroads, which would be
interesting to maximize as much as possible.

10

Chapter 3. Crossroads passing algorithms

3.2 Preexisting works

3.2.1 Traffic lights control

Scheduling with conflicts

In [1], Sandy Irani and Vitus Leung consider the traffic intersection control as the scheduling
of competing jobs with limited resources. The conflicts are modelled by graphs with the
nodes being the jobs to be accomplished (i.e. a vehicle or platoon of vehicles willing to pass
the crossroads) and the edges, the conflicts existing between the jobs. From this formalized
representation, the system infers the set of compatible jobs that can be run at the same time.

Using this scheduling algorithm, vehicles are allowed to pass the crossroads (i.e. the traffic
lights are green) if they do not conflict with other vehicles or platoon already allowed to pass
the crossroads. This scheme imposes physical constraints on the intersection as their must be
specific lanes for turning vehicles (e.g. going from North to East) for the conflict graph not
to have too few nodes and too much edges.

This approach is interesting because it garantees the absence of deadlock, thanks to the
properties of the conflict graph. It does not, however, take the dynamics of the vehicles into
account. Moreover, it is not trivial, from the traffic lights’ state information, to determine in
advance the speeds the vehicles have to achieve.

Self-organizing traffic lights

Carlos Gershenson proposed, in 2006, the concept of self-organizing traffic lights [2]. In the
paper, he compared several traffic lights control method, both fixed and self-organized.

Fixed methods just change the traffic lights state at given intervals, as it is currently done
in the Real World.

Self-organizing methods take into account the current upcoming traffic to adjust the
lights’ cycles (for example, not toggling the lights if there is no traffic from the other
direction).

The simulations run by Gershenson in [2] showed that the self-organizing methods were
performing better in terms of average speed of the vehicles, number of stopped vehicles and
average time to pass an intersection. Some asumptions made in the simulations, however,
limit the range and usability of the results:

• the vehicles were only coming from the northern and eastern part of the “world”, thus
not simulating vehicles on the same axis in opposite directions passing each other or
trying and turn to the same lane ;

• once again, the dynamics of the vehicles was not taken into account and it was not
possible to predict the desired speed in advance.

3.2.2 Multiagent-based reservations system

Kurt Dresner and Peter Stone suggested a multiagent traffic management system [3, 4] in
which a software agent running in the vehicles communicates with the infrastructure in order
to get a reservation on parts of the crossroads for a given period when it is expecting to pass.

11

Chapter 3. Crossroads passing algorithms

In the first paper, the basics of the system are set with important limitations – for example,
the vehicles aren’t allowed to turn – but some interesting characteristics. Instead of considering
the intersection between two roads as a single resource, it is possible to split the shared part
of the road into reservations tiles. The vehicles then have to place several reservations, with
various times and geographic positions. Whenever one tile is refused, the whole reservation
request is dropped and the vehicle has to wait until it can get a valid reservation and enter
the crossroads. The second paper removes the interdiction to turn, and gives a much more
implementable version of the system.

This reservation approach brings a new important feature. Contrary to traffic lights meth-
ods seen above, it is here possible to deduce, from the obtained reservation, the speeds at
which the vehicle should drive. Moreover, as the whole reservation is known before entering
the crossroads, the speeds profiles are known in advance, eventually giving the microscopic
level more information to decide how to adapt its moves.

Another interesting fact is the splitting of the resource in space and time. It becomes
possible for two or more vehicles, with totally differing origins and/or destinations to access
the crossroads at the same time while still being treated individually (as opposed to platoons,
which are not always trivial, when possible, to form).

One may notice, however, a slight drawback depending on the desired granularity of the
reservation tiles. With a very fine segmentation of the crossroads, there might be a large
number of these patches to keep track of, which may be too computationally intensive.

3.3 Yet another reservation system

Following this quick review of preexisting works, it is obvious that traffic lights-based systems
do not seem to easily provide the expected properties to reach the given goal. On the contrary,
the reservation system of Dresner and Stone already has some desirable features. Based on
these observations, the choice has been made to build a similar reservation system which could
properly integrate in our levels-based framework.

3.3.1 2-dimensional traces on the crossroads

In the context of the classical 2×2 crossroads as shown on Figure 3.1 on page 10, and following
the results of a previous internship concerning vehicles attainable moves (see Appendix A on
page I for a summary), it is possible to generate all the 2D traces on the intersection that a
vehicle may have to follow depending on its itinerary (Fig. 3.2 on the following page).

The curves are generated using clothoids, which are integrable functions guaranteeing the
physical attainability of each trace to the vehicles. As the geometry of a given intersection
does not change very often, it is reasonable to compute these traces once and store them in the
infrastructure agent. This agent may, in turn, give away this information to its counterpart
running in the vehicles, when requested.

3.3.2 Determining the resources to share

As already stated, the reservation algorithm of Dresner and Stone may not be very scalable
due to its way to split the crossroads. It is necessary to determine which resources actually
need management, and which ones can be ommitted without degradation of the performances
of the algorithm.

12

Chapter 3. Crossroads passing algorithms

Figure 3.2: Example of 2-dimensional traces that a vehicle may follow on the intersection.

Information Supervisor Vehicle agent
2D traces •

Critical points •
Source lane •

Destination lane •
Current speed •

Possible speed range •
Possible acceleration range •

Table 3.1: The information required for the algorithm to work and which actors originally
knows each of them.

Given the traces on the road (Fig. 3.2), it is obvious that the risk of collision exists espe-
cially where two or more traces intersect (Fig. 3.3 on the following page). It is indeed possible
for two vehicles with different sources and destination to be at the same trace intersection
at the same time (which is to be avoided). These intersections will be refered to as critical
points.

Restricting the reservations requests to the critical points allows to greatly reduce the
number of reservable entities to manage, while keeping the desired functionnality of the algo-
rithm unchanged.

3.3.3 Details of the algorithm

Once the resources to share have been determined and the information has been distributed
between the actors (Table 3.1), it is fairly simple to determine the steps of the reservation
algorithm.

13

Chapter 3. Crossroads passing algorithms

Figure 3.3: Some specific points, where two or more 2D traces intersect, are where the risk of
collision exists. These points are called critical points.

CP1 tstart1 tend1 CP2 tstart2 tend2 · · · CPn tstartn tendn

Table 3.2: An example reservation request.

Communication between the vehicle agent and the supervisor

In order to build a reservation request, the vehicle first needs to know which critical points
exist on the crossroads, and the 2D traces it will have to follow. Then it has all the necessary
information to compute a request. The algorithm (which UML sequence diagram can be seen
on Figure 3.4 on the following page) can then be outlined as follows:

1. A vehicle arrives close to the crossroads and requests the crossroads geometry from the
supervisor (i.e. the 2D traces and critical points);

2. According to its speed, it builds a reservation request which is sent back to the super-
visor;

3. The supervisor decides whether the request is acceptable or not and informs the vehicle
agent.

Building the request

The request is composed of the list of critical points to reserve – that is, the critical points on
the trace the vehicle has to follow to reach the exit of the interscetion. For every critical point,
the starting and ending times of the reservation are embedded in the request. An example
request diagram can be seen on Table 3.2.

14

Chapter 3. Crossroads passing algorithms

Geometry request

2D traces and critical points

Reservation request

Acceptation/Rejection

Computation
of the needed

reservations

Validity check of
the request against
existing reservations

Vehicle
agent

Supervisor
(infrastructure)

Figure 3.4: A synopsis of the communications between a reservation agent and the crossroads
supervisor.

15

Chapter 3. Crossroads passing algorithms

According to its current speed, the vehicle can compute its expected time of arrival (ETA)
to each of the critical points. As the dimensions of the vehicle are also known by the agent,
it is able to compute the expected time to pass (ETP) i.e. the time from the first instant the
vehicle is “over” the critical point to the last instant it is (Fig. 3.5).

ETP = tstart − tend

tstart tendETA

Figure 3.5: The relation between the time values used when building a reservation request.

To have a larger time window and ensure more security, the agent can also have a security
factor sf (≥ 1) by which multiply the ETP . According to this scheme, the times at which a
reservation starts and end can be expressed as

tstart = ETA− sfETP

2
, (3.1)

tend = ETA+
sfETP

2
. (3.2)

Assuming the reservation is made at a constant speed (i.e. the vehicle is not planning to
change its speed while following the trajectory) s, d being the distance to the critical point
along the trajectory and l the vehicle length, ETA and ETP are computed as

ETA =
d

s
, (3.3)

ETP =
l

s
. (3.4)

Another interesting – and seemingly more efficient in terms of performances – way to
compute ETA and ETP would have been to take the vehicle’s acceleration into account and
integrate the speed so that the reservation can already reflect the expected acceleration along

16

Chapter 3. Crossroads passing algorithms

the trajectory. This has not been the case in this study but may be interesting to keep in
mind as future works.

It seems reasonable, also, to try and reserve neighboring critical points, i.e. those critical
points not on the trace the vehicle has to follow but which may be too close to it.

Checking the validity of a reservation

The supervisor is in charge of accepting or rejecting a reservation. To do so, it keeps track of
all the critical points of the crossroads and the periods at which each is already reserved.

Upon an upcoming reservation request, it will sequentially check, for all of the critical
points to be reserved, that the requested periods are free. In case anyone of the period is
not free, the whole reservation is rejected. If no overlapping is detected, the reservation is
accepted.

Behavior after a reservation request has been answered

There are two outcomes to the reservation request: either it is accepted or refused. Depending
on the supervisor’s answer, the vehicle agent will behave differently:

the reservation is refused ⇒ the vehicle slows down to stop before the first critical point
while continuing to try and obtain a reservation;

the reservation is accepted ⇒ the vehicle remains at a constant speed or tries to place
new reservations assuming higher speeds in order to pass faster.

3.3.4 Some comments about the algorithm

It is important to note that, in the above algorithm, the work is clearly separated into three
phases:

1. the vehicle agent’s building of the reservation;

2. the supervisor’s validation of the request;

3. communication between both entities.

This is very interesting as, as mentionned in [4], this means that the implementation
of parts of this algorithm can be done in a fully separated way, as long as they respect
the communication protocol. Taking the idea a bit further, this means that it is possible to
implement, on either side, a completely different approach than those described above and,
provided it is valid, still have a fully working system.

17

Chapter 4

Simulation and results

4.1 Simulator

In order to test the algorithm presented in section 3.3 on page 12, a simulator (Fig. 4.1 on
the following page) has been written. The source code is available1 in Inria’s GForge.

4.1.1 Simplifying assumptions

As the goal is to validate the proposed algorithm, several simplifying assumptions have been
made:

perfect communication the transmission time between the agents is considered null and
no packet is lost;

perfect microscopic level once the trajectory has been passed on by the mesoscopic level,
the microscopic level exactly follows the plan given by the upper level;

homogeneous traffic only cybercars running a vehicle agent to place reservations are sup-
posed to be on the road.

4.1.2 Technical choices

The simulator is supposed to be a proof-of-concept prototype. As noted earlier, several parts
of the proposed algorithm, or even the full algorithm, may be replaced in order to test new
methods or compare performances.

With this in mind, it has been decided to write the simulator in Python2, a highly portable
programming language with a fully object-oriented base.

4.1.3 Architecture

The idea was to provide an algorithm-testing framework into which it would be easy to imple-
ment new policies. Using and object-oriented approach allowed to design interfaces (Fig. 4.2
on page 20) with which the actual modules implementing the policies should conform in order
to be directly simulable.

1browseable source: https://gforge.inria.fr/plugins/scmsvn/viewcvs.php/simulator/?root=mehani;
downloadable package: https://gforge.inria.fr/frs/?group_id=424&release_id=951

2http://www.python.org/

18

https://gforge.inria.fr/plugins/scmsvn/viewcvs.php/simulator/?root=mehani
https://gforge.inria.fr/frs/?group_id=424&release_id=951
http://www.python.org/

Chapter 4. Simulation and results

Figure 4.1: A screenshot of the crossroads simulator.

19

Chapter 4. Simulation and results

SimulationManager

TraceManagerVisualizationManager

Vehicle

1 1

Unless otherwise stated, dimensions

are expressed in meters (m), angles

in degrees and times in seconds (s).

IntroductionManager

Trace
1

0..n
TraceUser

SpeedsManager

VisualizationData

VehiclesManager

Trajectory

Rectangle

1 1 1

is in

0..n

VerboseObject

Manager

Figure 4.2: The main UML class diagram of the simulator.

Some of the classes shown in the main UML diagram (the Managers) are only abstract.
It is up to the developer to code implementations of these according to the algorithm or
functionnality he wants to add. For everyone of them, at least one default version has been
implemented for the simulator to be able to work “out of the box”.

Already implemented classes

Some classes of the simulator provide objects or functions which might be needed by other
parts of the program, or are abstract classes which are already implemented with a default
behavior satisfying most needs.

the SimulationManager (Fig. 4.3 on the following page) is the main part of the simulator.
It initializes all its modules (i.e. the other managers) then runs an infinite loop calling
the step() method of each at every timestep.

the IntroductionManager is in charge of holding the vehicles and introducing them on
the crossroads when their is enough space left or according to some statistical laws.
Currently, the most used is the QuadPoissonIntroductionManager which introduces
the vehicles according to a Poisson law for each lane.

the VehiclesManager has the role of selecting the type of vehicle to be introduced in the
crossroads (actually, to be introduced in the waiting queue of the IntroductionManager).
The default implementation (RouletteWheelVehiclesManager) is based on a roulette
wheel mechanism.

the VisualizationManager just provides a system to give feedback to the user. Currently,
the DefaultVisualizationManager provides a simple Graphical User Interface as shown

20

Chapter 4. Simulation and results

SimulationManager

+size: float

+lane_size: float

+border_size: float = (size − lane_size * 2.0) / 2.0

+step_counter: int

+dt: float

+security_distance: float

+time_realistic: boolean

−_vehicles: list{Vehicle}

−_waiting_vehicles: list{Vehicle}

−_pause_condition

−_stop_condition

−_im: IntroductionManager

−_tm: TraceManager

−_vhm: VehiclesManager

−_vm: VisualizationManager

−_spm: SpeedsManager

−_num_vehicles: int

−_num_collisions: int

−_crossroads_collisions: int

+reset()

+start(maxsteps:int=None)

+pause()

+paused(): boolean

+stop()

+loop(maxsteps:int=None)

+step()

+exit()

+add_vehicle(vehicle:Vehicle=None)

+remove_vehicle(vehicle:Vehicle)

+get_vehicle_list(): list{Vehicle}

+object_position(): int

+get_stats(): (min_age: int, max_age: int,

 average_age: float)

+get_additional_visualization_data(): list{VisualizationData}

+create_vehicle(speed:float=None,trace:Trace=None,

 path:(enum{N, E, S, W}, enum{N,

 E, S, W})=None): Vehicle

+debug_console(additional_locals:dict{name: string ; value})

+steps_to_seconds(step:int): float

+seconds_to_steps(seconds:float): int

+compute_current_time(): float

+get_traces_list(): list{Trace}

+get_trace(path:tuple(enum{N, E, S, W}, enum{N,

 E, S, W})): Trace

Figure 4.3: The SimulationManager is the central class of the simulator.

21

Chapter 4. Simulation and results

on Figure 4.1 on page 19 while the DummyVisualizationManager just does nothing ex-
cept printing a status line every 100 timesteps, for long simulations and results gathering
purposes.

the TraceManager generates the 2D traces and finds the critical points. According to Ap-
pendix A on page I, the implementation, ClothoidTraceManager, uses clothoids to
construct curves that the vehicles’ dynamics can follow.

the Trace object (Fig. 4.4) is a representation of 2D traces and provides useful methods to
ease their manipulation.

Trace

+length

−_critical_points: dict{(x: float, y:float) ; list(Trace)}

−_desc

+set_description(desc:string)

+get_description(): string

+find_critical_points(others:list{Trace})

+get_critical_points(): list{(x: float, y: float)}

+split_around_abscissa(): (before: list{(x: float ; y: float)},

 point: (x:float ,

 y: float) ; after: list{(x: float ; y: float)})

+get_coords_from_abscissa(t:float): (x: float ; y: float)

+get_abscissa_from_coords((x: float; y: float)): float

+get_direction_at_abscissa(t:float): float(−180 ; 180)

+get_direction_at_coords(coords:(x: float ; y: float)): float(−180 ; 180)

+get_remaining_waypoints_abscissae(t:float): list{float}

+get_remaining_waypoints(t:float): list{(x: float ; y: float)}

+get_remaining_critical_points_abscissae(t: float): list{float}

+get_remaining_critical_points(t:float): list{(x: float ; y: float)}

Figure 4.4: The Trace object exposes useful manipulation methods.

the TraceUser object (Fig. 4.5 on the following page provides a set of methods to help
moving an object along a given trace.

the Trajectory object is used to add timing information to the Traces, in order to repre-
sent the full kynetics expected from the vehicle.

the Rectangle object (Fig. 4.6 on page 24) is a basic class providing geometric function.
It is mostly intended to be used as a parent class for the Vehicle.

Classes important for the algorithm developer

There are two main classes that need to be in order to implement crossroads passing algo-
rithms: Vehicle and SpeedsManager.

the SpeedsManager (Fig. 4.7 on page 24) is in charge of generating acceptable trajectories
for the vehicles. It only has three interesting methods to keep track of the vehicles on
the crossroads and generate the trajectories.

22

Chapter 4. Simulation and results

TraceUser

−_trace: Trace

−_abscissa: float

−_position: (x: float ; y: float)

−_direction: float{−180 ; 180}

+color: tuple (R: int, G:int, B: int)

+set_trace(trace:Trace=None,abscissa:float=0.0)

+get_trace(): Trace

+set_abscissa(abscissa:float=0.0)

+get_abscissa(): float

+set_position(position:(x: float ; y: float))

+get_position(): (x: float, y:float)

+set_direction(direction:float)

+get_direction(): float{−180 ; 180}

+get_next_waypoint(): (x: float ; y: float)

+get_remaining_waypoints(): list{(x: float ; y: float)}

+get_next_critical_point()(): (x: float ; y: float)

+get_remaining_critical_points(): list{(x: float ; y: float)}

+get_visualization_data(): list{VisualizationData}

Figure 4.5: The TraceUser contains all the needed methods and properties to simulate the
movement of an objet.

the Vehicle class (Fig. 4.8 on page 25) handles the movement of the cybercar along its tra-
jectory. The default class can be used as-is, providing basic trajectory-following func-
tions, but it may be necessary to extend the class in order to add algorithm-specific
behaviors, like has been done in the ReservationVehicle.

4.2 Results

In order to test the performances of the proposed reservations algorithm, two other crossroads-
passing policies have been implemented:

None which allows every vehicle to pass the intersection at full speed regardless of the col-
lisions. It is supposed to be a good estimation of the lower bounds of the time needed
to pass the crossroads. An algorithm getting time results close to those of this dummy
policy could reasonably be considered a good one.

Polling treats the crossroads as a single atomic resource and only allows one vehicle at the
time to pass it. This policy is 100% safe in terms of collision- and deadlock-freedom,
but is intuitively not time-efficient.

Simulations of these two policies and the reservations based have been run for 100s3 each4.
One can note (Table 4.1 on page 26) that the dummy policy has a high throughput and

3in-simulation time
40.02s timestep

23

Chapter 4. Simulation and results

Rectangle

−_width

−_length

−_radius

−_diagonal_angle

−_position

−_direction

+set_size(width:float=None,length:float=None)

+get_size(): (width: float ; length: float)

−_compute_radius(): float

+get_radius(): float

−_compute_diagonal_angle(): float

+get_diagonal_angle(): float

+set_position(position:(x: float ; y: float))

+get_position(): float

+set_direction(direction:float)

+get_direction(): float

+get_front_coords(position:(x: float ; y: float)=None,

 direction:(x: float ; y: float)=None): (x: float ; y: float)

+get_corners(position:(x: float ; y: float)=None,

 direction:float=None): list{(x: float ; y: float)}

+is_corner_inside(corners:list{(x: float ; y: float)},

 position:(x: float ; y: float)=None,

 direction:float=None,epsilon:float=0.0): boolean

+is_point_inside(point:(x: float; y: float),

 position:(x: float ; y: float)=None,

 direction:float=None,epsilon:float=0.0): boolean

+check_collision(other:Rectangle || list{Rectangle},

 position:(x: float ; y: float)=None,

 direction:float=0.0,epsilon:float=0.0): boolean || list{boolean}

+compute_distance(other:Rectangle || list{Rectangle},

 position:(x: float ; y: float)=None): float || list {float}

Figure 4.6: The Rectangle object provides useful geometric methods.

SpeedsManager
+add_vehicle(vehicle:Vehicle)

+remove_vehicle(vehicle:Vehicle)

+request_trajectory(vehicle:Vehicle): Trajectory

Figure 4.7: The SpeedsManager exposes only a few functions to propose trajectories to the
vehicles.

24

Chapter 4. Simulation and results

Vehicle

−_security_distance

−_path: (enum{N, E, S, W}, enum{N, E, S, W})

−_trajectory: Trajectory

−_speed: float

−_acceleration: float

−_age

−_colliding_vehicles: list{Vehicle}

−_collisions_count: int

−_crossroads_collision_count: int

+set_security_distance(d:float=0.0)

+get_security_distance(): float

+set_path(path:tuple(enum{N, E, S, W}, enum{N,

 E, S, W}))

+get_path(): tuple(enum{N, E, S, W}, enum{N,

 E, S, W})

+set_trajectory(trajectory:Trajectory)

+get_age(current_step:int): int

+get_speed_range(): (min:float, max:float)

+set_speed(speed:float)

+get_speed(): float

+get_normalized_speed(): float{−1. ; 1.}

+normalize_speed(speed:float): float{−1. ; 1.}

+is_speed_valid(speed:float): boolean

+rerange_speed(speed:float): float

+get_acceleration_range(): (min:float, max:float)

+set_acceleration(acceleration:float)

+get_acceleration(): float

+is_acceleration_valid(acceleration:float): boolean

+rerange_acceleration(acceleration:float): float

+step(sm:SimulationManager,dt:float,vehicles:list{Vehicle}): (x: float,

 y:float)

−_adjust_acceleration(sm:SimulationManager,

 df:float,vehicles:list{Vehicle})

+compute_next_acceleration(sm:SimulationManager,

 speed:float=None,

 target_speed:float=None): float

−_adjust_speed(sm:SimulationManager,dt:float,

 vehicles:list{Vehicle})

+compute_next_speed(sm:SimulationManager,

 acceleration:None): float

−_adjust_abscissa(sm:SimulationManager,dt:float)

+collides(other:Vehicle=None,sm:SimulationManager=None): boolean

+get_collisions_count(): int

+get_crossroads_collisions_count(): int

+add_colliding_vehicle(other:Vehicle)

+remove_colliding_vehicle(other:Vehicle)

+compute_braking_distance(speed:float=None): float

+_compute_lookahead_distance(alpha:float)

+compute_vehicles_in_sight(vehicles:list{Vehicle},

 position:(x: float ; y: float)=None,

 direction:float=None): list{Vehicle}

+will_collide(vehicles:list{Vehicles},security_distance:float=0): boolean

+find_closest_next_collision(vehicles:list{Vehicles},

 security_distance:float=0): (Vehicle,

 float)

+compute_eta(target_abscissa:float,abscissa:None,

 speed:float=None): float

+compute_etp(speed:float=None): float

+get_future_heading(coords:(x:float, y:float))

Figure 4.8: The Vehicle class already provides all the methods which may be needed to sim-
ulate a 4-wheeled vehicle. These may be used as-is or inherited in more algorithm-specific
implementations.

25

Chapter 4. Simulation and results

Time (s) Collisions Vehicles
min max avg

None 5.28 10.80 6.21 458 422
Polling 5.28 92.02 47.37 0 108
Reservations 5.28 16.82 9.79 0 134

Table 4.1: The performances of the reservation algorithm compared to others. All results were
obtained running the simulator for 100 (simulated) seconds with a 0.02s timestep.

relatively low passing times, while the polling policy only has one quarter of the throughput
and much higher times, but no collision.

The reservation algorithm, in comparison, behaves quite efficiently: no collisions have
occured while the throughput was higher than that of the polling algorithm, and the times
to pass were closer to those of the dummy policy.

This behavior is what was expected. The reservation algorithm detailed earlier was de-
veloped to provide a more efficient use of the crossroads space by distributing it between
the vehicles in a much denser way than the polling algorithm does. Moreover, the fact that
vehicles are required to have reserved a critical point before passing it is the key to surely
avoid collisions on the managed space as long as the supervisor only accepts non-overlapping
reservations.

In this respect, one can consider that this reservation algorithm, as simulated here, is quite
efficient and may be interesting to study and implement further.

26

Chapter 5

Conclusion and future works

After simulating the proposed algorithm, it turns out that it is, indeed, an interesting schedul-
ing method to improve the crossroads management in the context of fully automated cyber-
cars. It has been shown that better results were obtained than with polling methods similar
to traffic lights, as the intersection can be used by several vehicles at the same time thanks
to the separation of the main resource into critical points.

The preliminary simulations which have been run, however, were assuming a lot of sim-
plifying conditions which should be, in future works on this topic, removed in order to obtain
a much more realistic simulation and implement the algorithm in actual cybercars.

One important thing to do would also be to formally prove the deadlock-freedom of the
algorithm, in the case of a perfect microscopic level, and provide ways to avoid those which
may arise in a more realistic case (e.g. if a cat crosses in front of a car, preventing it from
being able to continue on time, on its trajectory).

As a conclusion, one can say that this thesis resulted in the first developments of quite an
efficient algorithm, but some more work is still needed to take it out of the simulation and
put it into Real World vehicles.

27

Bibliography

[1] Sandy Irani and Vitus Leung. Scheduling with conflicts, and applications to traffic signal
control. In SODA ’96: Proceedings of the seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 85–94, Philadelphia, PA, USA, 1996. Society for Industrial and
Applied Mathematics.

[2] Carlos Gershenson. Self-organizing traffic lights. COMPLEX SYSTEMS, 16:29, 2004.

[3] Kurt Dresner and Peter Stone. Multiagent traffic management: A reservation-based inter-
section control mechanism. In The Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 530–537, New York, New York, USA, July 2004.

[4] Kurt Dresner and Peter Stone. Multiagent traffic management: An improved intersection
control mechanism. In The Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 471–477, Utrecht, The Netherlands, July 2005.

28

Appendix A

Model of a car and its trajectory

The following is a summary of the work of another intern at Imara, Hayet Ait Mebarek, who
has been working on the modelization of a Cybercar and its attainable trajectories. This has
served as a basis for the preliminary study of the 2D traces generator used in the simulator.

A.1 Dynamic model of a cybercar

An usual road vehicle is an non-holonomic vehicle. This means that its attainable moves are
not only constrained by its position in time and space, but also by its velocity, momentum or
direction.

For example, some of the constraints are expressed as non-integrable relations between
the state of the vehicle and some of its derivatives.

A.2 Acceptable traces model

A.2.1 Dubin’s curves

Dubins has proved that, for vehicles assimilable to bicycles (bicycle model, like the cars dealt
with) with no obstacle in sight, the shortest path between two configurations is a curve. This
curve can be generated by linking circles arcs by line segments. Such a curve is called a Dubin’s
path.

A.2.2 Clothoids

Clothoids (Fig. A.1 on page II) are a specific type of parametric curves which radius of
curvature changes linearly. This is similar to what is obtained steering the wheel of a car.

These parametric curves can be expressed as x(t) = a
√
π · FresnelS

(
t√
π

)
y(t) = a

√
π · FresnelC

(
t√
π

) , (A.1)

where {
FresnelS(u) =

∫ u
0 sin πt2

2 dt
FresnelC(u) =

∫ u
0 cos πt

2

2 dt
. (A.2)

I

Chapter A. Model of a car and its trajectory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure A.1: An example of clothoid.

A.2.3 Generating traces

With these two elements, it is possible to construct traces adapted to what actual road vehicles
can follow. Joining clothoids by segments (Fig. A.2) as proposed by Dubins allows to build
complete paths on the studied itinerary (here, a crossroads).

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

Figure A.2: Dubins’ paths generated from clothoids.

II

List of Figures

1.1 Different types of cybercars . 1

2.1 The two main platforms used at Imara. 6
2.2 The C3s’ hardware architecture. 7
2.3 The CyCab’s initial hardware architecture. 8

3.1 A regular crossroads. 10
3.2 2D traces on the crossroads. 13
3.3 The critical points on the regular crossroads. 14
3.4 A synopsis of the communications between a reservation agent and the cross-

roads supervisor. 15
3.5 The relation between the time values used when building a reservation request. 16

4.1 A screenshot of the crossroads simulator. 19
4.2 The main UML class diagram of the simulator. 20
4.3 SimulationManager UML description. 21
4.4 Trace object UML description. 22
4.5 TraceUser object UML description. 23
4.6 Rectangle object UML description. 24
4.7 SpeedsManager UML description. 24
4.8 Vehicle object UML description. 25

A.1 An example of clothoid. II
A.2 Dubins’ paths generated from clothoids. II

III

List of Tables

3.1 The needed information pieces and their holders. 13
3.2 An example reservation request. 14

4.1 Reservation algorithm performances compared to others. 26

IV

Index

Ait Mebarek, Hayet, I
Benenson, Rodrigo, i, 1
Bouraoui, Laurent, i, 6
La Fortelle (de), Arnaud, i
Parent, Michel, 4
Yvet, Armand, i
2D trace, I, 12, 14, 22

Adas-RP, 6
artificial intelligence, 5

bicycle model, I

camera, 6, 8
CAN bus, 6
CAOR, 5
CGFTE, 4
Citroën C3, 6
class

IntroductionManager, 20
Rectangle, 22, 24
SimulationManager, 20, 21
SpeedsManager, 22, 24
Trace, 22
TraceManager, 22
TraceUser, 22, 23
Trajectory, 22
Vehicle, 22, 23, 25
VehiclesManager, 20
VisualizationManager, 20

clothoid, I, II, 12, 22
critical point, 13, 14, 16, 17, 27
crossroads, II, 1, 9–12, 14, 15, 17, 19, 22, 23,

27
cybercar, I, 1, 6, 9, 10, 18, 23, 27
CyCab, 1, 4, 6, 8

Dassault Electronique, 4
deadlock, 9

École des Mines, 5

EDF, 4
embedded systems, 3, 5
expected time of arrival, 16
expected time to pass, 16

framework, 9

GPRS, 6

Imara, i, I, 1, 3–8
infrared device, 8
infrastructure, 11
Inrets, 4
Inria, i, 3–6, 18
intelligent transportation systems, 4

joint research unit, 5

La Route Automatisée, 5
level, 9, 12

macroscopic, 9
mesoscopic, 9, 18
microscopic, 9, 10, 12, 18, 27

multiagent traffic management system, 11

navigation, 6
network, 6
non-holonomic, I

path, I, II, 2, 5, 9
Praxitèle, 4

Renault, 4
reservation, 11–17, 23, 26
reservation system, 12

security factor, 16
signal processing, 5
simulator, I, 18–20
software agent, 11
supervisor, 13–15, 17

V

INDEX

traffic lights, 11, 12
trajectory, 9

ultrasonic device, 8

vehicle agent, 13, 14, 16–18

wireless, 5, 6

VI

	Introduction
	Presentation of Imara
	Inria
	Short timeline
	Praxitèle
	Imara
	LaRA

	Research fields
	Platforms
	C3s
	CyCabs

	Crossroads passing algorithms
	Problem statement
	Layered control
	Crossroads
	Desired output

	Preexisting works
	Traffic lights control
	Multiagent-based reservations system

	Yet another reservation system
	2-dimensional traces on the crossroads
	Determining the resources to share
	Details of the algorithm
	Some comments about the algorithm

	Simulation and results
	Simulator
	Simplifying assumptions
	Technical choices
	Architecture

	Results

	Conclusion and future works
	Model of a car and its trajectory
	Dynamic model of a cybercar
	Acceptable traces model
	Dubin's curves
	Clothoids
	Generating traces

