
Context-Aware Network Stack Optimization

Olivier Mehani1,2 Roksana Boreli2 Thierry Ernst1

1Institut National de Rercherche en Informatique
et Automatique — Équipe-projet Imara

name.surname@inria.fr

2National ICT Australia —
Networked Systems Theme

name.surname@nicta.com.au

October, 20 2009

Outline

1 Context and Objectives

2 Motivating Examples

3 Target Architecture
Constraint-based Decision Algorithm
Current Status

4 Conclusion and Short-term Plans

Outline

1 Context and Objectives

2 Motivating Examples

3 Target Architecture
Constraint-based Decision Algorithm
Current Status

4 Conclusion and Short-term Plans

Context and Objectives
Heterogeneous environment but some unifying blocks

Vehicular networks

Rapidly changing conditions
Mobility geographical and time patterns

Ad-hoc environment

Few or no structural organisation
Possibility of insider attacks

Network mobility and Multihoming

Several interfaces, networks and routes available at once to
choose from
ISO CALM mandates IPv6 use

Context and Objectives
No repository of complete information without cross-layering

Network information and control scattered between layers

All parameters contribute to the overall performance
No full read/write access to all of them

Consideration of cross-layer approaches

Share information between layer implementations
Each layer makes its own optimizing decision

Usual issues of such designs

Linked layers too specialized for the considered environment
Unintended interactions vith each other or other parts of the
system

Out-of-stack cross-layers information busses

MobileMAN, ULLA, CALM Manager,. . .
Doesn’t quite solve the bad interaction problem

Context and Objectives
Use the network resources as soon as possible and as much as supported

Fully informed decision out of the stack

Based on all available information
Updates parameters of several layers at once

Advantages:

Avoid over-specialization of layers
Work around bad interactions
Can use non network-related information

History, context, localization, . . .

⇒ Replace a knowledgeable user tweaking their parameters

knows the full current network performance

has an idea of the current best achievable

knows reasonably well what is soon to change

can change any parameter

Outline

1 Context and Objectives

2 Motivating Examples

3 Target Architecture
Constraint-based Decision Algorithm
Current Status

4 Conclusion and Short-term Plans

Motivating Examples
Transport adaptation on link characteristics change

Several possible changes in routes configuration

increase or reduction in the number of hops in a mesh network

switch from NEMO routes to MANET routes (or opposite)

A

B C

1 2

Movement

Wireless link

Communication flow

Motivating Examples
Transport adaptation on link characteristics change

Several possible changes in routes configuration

increase or reduction in the number of hops in a mesh network
switch from NEMO routes to MANET routes (or opposite)

A

B

HABHAA

1

2

RSU2

RSU1

Motivating Examples
Transport adaptation on link characteristics change

Several possible changes in routes configuration

increase or reduction in the number of hops in a mesh network
switch from NEMO routes to MANET routes (or opposite)

Ever-varying link parameters

multipath fading
interferences

Transport protocol not directly aware of such changes

Slow feedback-based adaptation to new link and path
characteristics
Need information about the link and path performances
Similar issues for a new connection: expected path throughput
as observed on other sockets along the same path

Application parameters adjustment

quality
sampling rate

Motivating Examples
Transport adaptation on link characteristics change

Several possible changes in routes configuration

increase or reduction in the number of hops in a mesh network
switch from NEMO routes to MANET routes (or opposite)

Ever-varying link parameters

Transport protocol not directly aware of such changes

Slow feedback-based adaptation to new link and path
characteristics
Need information about the link and path performances
Similar issues for a new connection: expected path throughput
as observed on other sockets along the same path

Application parameters adjustment

quality
sampling rate

Motivating Examples
Transport adaptation on link characteristics change

21

AP1 AP2

Access point wireless coverage

S

C

Choose the most appropriate uplink or route

Based on current measurements
Based on previous observations

Inform transport/application as previously mentionned

Motivating Examples
Rogue VANET Node

E advertises its presence but doesn’t forward traffic properly

A

B

E

D

C

Unusable link

Communication between A and D not possible along the
shortest path

Switching to another route desirable

Quick upper layers adjustement needed afterwards

Outline

1 Context and Objectives

2 Motivating Examples

3 Target Architecture
Constraint-based Decision Algorithm
Current Status

4 Conclusion and Short-term Plans

Target Architecture
Towards a global optimization system

Decision
system

prevention
Oscillation

algorithm
Decision

Application

Transport

Network

Mobility

Link &

Physical

Conditions
predictionsContext

history

Collaborative
history

BatteryGPS

Clock

“External”
context

Target Architecture
Combining observation, prediction and decision

Abstracted metrics from the stack

datarate, delay, ETX, RTT, loss, . . .

Context observations and history

human timescale: days or weeks
predict forthcoming conditions based on previous observations
in similar contexts (day of the week, localization, movement
pattern)

Decision engine

internal history to avoid short-period oscillations
hints to the stack to finally optimize the network usage

Target Architecture
Optimization decision based on global knowledge

Globally aggregated information from the stack layers

Application: Iapp(s, t) = {c = codec(t), . . .}
Transport: Itrp(s, t) = {thr = throughput(s, t), rtt(s, t), . . .}
Network: Irt(t) = {nhB = nextHop(B, t), . . .}

Relative impact of the combination on current performance

“For socket s, a throughput of thr , needed by codec c , is
achievable towards node B along a path starting with nhB .”
Identification of other communications with common
characteristics (e.g. same destination) but different
performance (e.g. higher throughput)

Hint the network stack layer to adapt to the possible
conditions e.g.,

change interface modulation or power
switch route for an address (or range), perform a handover
update transport state parameters
modify application parameters (e.g. encoding or rate)

Constraint-based Decision Algorithm
Motivation and basic idea

Large configuration space → Combinatorial search techniques

Modelled as a Constraint Programming problem

The constraints solver unifies parameters to derives hints for
the stack

Application quality:
Qual(Quality ,Throughput, Jitter ,RTT ,PER)
Application socket: SocketDestination(Socket,Destination)
Transport and routing conditions:
Routing(Destination,Route, Interface,Throughput, Jitter ,RTT ,PER)

Variables to unify are

observed conditions on the links/networks/paths (offer)
possible configurations of the layers (demand)

Constraint-based Decision Algorithm
Example relations for a simplified model

Observed network performances

Destination Route Interface Throughput Jitter RTT PER

Addr1 NH2 eth0 2 Mbps 1 × 10−4 s 10 × 10−3 s 0%
Addr1 NH1 wlan0 900 kbps 1 × 10−3 s 100 × 10−3 s 10%
Addr2 NH1 wlan0 450 kbps 1 × 10−3 s 250 × 10−3 s 30%

. . .

Socket between applications and
destinations

Socket Application Destination

1 App1 Addr1
. . .

Interface costs (switching + usage)

Interface Cost

eth0 10
wlan0 100
ppp0 250

. . .

Application App1 parameters and requirements

Quality Throughput Jitter RTT PER

1 ≥ 1.5 Mbps ≤ 10−3 ≤ 10 × 10−4 s ≤ 10 × 10−3

2 ≥ 1 Mbps idem idem idem
3 ≥ 500 kbps ≤ 10−2 ≤ 10 × 10−3 s idem

Constraint-based Decision Algorithm
Optimizing a cost function

Parameter valuation trying to minimize a cost function e.g.

min (α · rtt − β · thr + γ · Cif)

minimize rtt
maximize throughput
minimize interface cost

Current Status
Core compononents under development

Python/Netlink implementation under Linux
NETLINK ROUTE, pushed by the kernel

link configuration parameters (RTMGRP LINK)
neighbor information (RTMGRP NEIGH)
interface addresses (RTMGRP IPV6 IFADDR)
route information (RTMGRP IPV6 ROUTE)

NETLINK INET DIAG, upon request

socket information
transport parameters

not widely available (yet)

passing hints back to the stack to change parameters

MiniZinc Constraint Solver

current model similar to previously outlined
extended by history and cost relations
subject to change

Current Status
Timing evaluation of the solver

CSP model randomly generated (max 5 interfaces, 190
destinations, 95 sockets)
Coherent data (respecting ranges and correlations of
parameters)
100 runs on an Intel Core2 Duo 2 GHz, 1 GB RAM
All optimizations disabled → raw estimate of a higher bound

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

Ti
m

e
to

 e
xp

lo
re

 th
e

pr
ob

le
m

 s
pa

ce
 [s

]

Number of tuples in the relations

Outline

1 Context and Objectives

2 Motivating Examples

3 Target Architecture
Constraint-based Decision Algorithm
Current Status

4 Conclusion and Short-term Plans

Conclusion and Short-term Plans

Global cross-layer optimization framework

External decision process

Early implementation blocks

Ongoing work
Finish the prototype implementation

Generalize the use of Netlink to adjust parameters
Unification of data

Next steps

Acquire network and contextual data samples
Large scale simulations
Consider other decision systems

Thanks

olivier.mehani@inria.fr

olivier.mehani@nicta.com.au

Backup

Target Architecture
Metrics, statuses and parameters

Physical/Link

Raw characteristics rate, status, bytes, lost segments (RR),
lost fragments (FER), link, noise (RSSI, SNIR) ;
Notifications: link up, link down,
link quality changed [ULL], transmission power

for each MAC neighbour (e.g. AP/Cell Tower in
infrastructure mode; all neighbours for ad-hoc modes)

Events Link Up/Down/Parameters Change/Going
Down; Load Balancing; Operator
Preferences [802.21]

Contextual information VLAN [802.1q], SSID [802.11],
CellID,. . .

Network/Mobility

Transport

Application

See also [RFC4907]

Architecture description

Target Architecture
Metrics, statuses and parameters

Physical/Link

Network/Mobility

abstract route metrics
MTUs
possible next hops to an address/range,
route addition/removal/change
ARP/NDP: mapping from next hop to MAC address
single-interface handoff decisions

Transport

Application

See also [RFC4907]

Architecture description

Target Architecture
Metrics, statuses and parameters

Physical/Link

Network/Mobility

Transport

throughput (for TCP: cwnd, sstthr, wnd)
RTT
loss rate
congestion information about paths
path MSS
peers’ network address(es)

Application

See also [RFC4907]

Architecture description

Target Architecture
Metrics, statuses and parameters

Physical/Link

Network/Mobility

Transport

Application

requirements in end-to-end bandwidth
end-to-end delay limits
need for packet reliability (implicitely stated when chooosing
the transport)
configurable modes of operation (e.g. codecs), and all of the
above for each
“satisfaction” (completely ad-hoc to the application e.g., peer
feedback on validity of data)

See also [RFC4907]

Architecture description

	Context and Objectives
	Motivating Examples
	Target Architecture
	Constraint-based Decision Algorithm
	Current Status

	Conclusion and Short-term Plans

