
Design and Implementation of the Open

Connectivity Services Framework

Luis Diez1, Olivier Mehani2, Lucian Suciu3, and Ramón Agüero1

1 Universidad de Cantabria, Santander, Spain
{ldiez,ramon}@tlmat.unican.es

2 NICTA, Sydney, Australia
olivier.mehani@nicta.com.au
3 Orange Labs, Rennes, France

lucian.suciu@orange-ftgroup.com

Abstract. The Open Connectivity Services (OConS) framework is cur-
rently being defined within the framework of the SAIL project. Its main
objective is to offer adaptive connectivity services to seamlessly address
user and service requirements while complying with operator policies and
dealing with the heterogeneous and changing network conditions of the
future Internet. This paper describes a realization of this framework. It
supports flexible integration of both legacy and novel mechanisms and
protocols by mapping them to three abstract functional entities: infor-
mation, decision and execution elements. Organization of these entities
is done through an orchestration process to combine and integrate the
various mechanisms into a full service for the user. We introduce the
OConS protocol used for communication between the presented entities
as well as the role played by the orchestration process. We then present
the concrete example of a testbed based on this implementation, which
shows the feasibility and effectiveness of the proposed approach.

Key words: Future Internet, Connectivity Services, Access Selection,
Implementation, Demonstration

1 Introduction

Within the most promising research forums on Future Internet is an ongoing
debate on the appropriateness of clean-slate approaches. Such approaches allow
to sever the ties with the limitations of the currently deployed technologies, and
support novel solutions better tailored to current needs. Conversely, following
a less radical evolutionary path would allow for easier incremental deployment
while avoiding the need for an altogether impossible flag day. So far, no clear di-
rection has been agreed upon. A key element in working towards such an answer,
however, is rooted in experimental initiatives aimed at testing the feasibility of
one or the other approach.

The Scalable and Adaptive Internet Solutions (SAIL) project is one research
initiative in the Future Internet realm [1], with a strong emphasis on integration
and prototyping. It focuses on three core concepts: the use of information-centric

{ldiez,ramon}@tlmat.unican.es
olivier.mehani@nicta.com.au
lucian.suciu@orange-ftgroup.com


2 Luis Diez et al.

networking (NetInf), the possibilities which appear with the advent of cloud
networking concepts extending virtualization techniques to the network itself
(CloNe) and the provision of seamless integration of legacy and future technolo-
gies into open connectivity services (OConS). The present paper focuses on the
latter. Indeed, due to their rigidity and lack of large-scale dynamic reconfigu-
ration capabilities, legacy connectivity services have increasing problems coping
with the rapid evolution of communication requirements and patterns. New so-
lutions are needed, which are dynamic, flexible and open, so as to be able to
adapt to both the requirements of the different users and services as well as the
ever-changing conditions of nowadays’ heterogeneous networks.

Resources to be controlled and the connectivity issues which this raises are
numerous and varied, each of them with their particular characteristics, proce-
dures, algorithms and protocols. A monolithic design would therefore not fare
well in dealing with such issues. The approach proposed within OConS is that of
a highly modular architecture flexible enough to cope with these conditions [2].
A preliminary version of this framework was presented in [3]. The services are
structured into to three complementary phases (information gathering, deci-
sion making and execution enforcement), and the associated entities performing
these tasks. Lately the focus has been put on the elements needed to organize
and control these entities as well as the various procedures required to achieve
this orchestration.

As already mentioned, one of the key aspects in this line of research is the
assessment, over real platforms, of the proposed architectures, procedures and
protocols. This is the main focus of this paper; it presents the activities towards
an implementation of the OConS framework as well as the use of this imple-
mentation into a real testbed, and uses it as an evaluation of the feasibility of
the proposed open connectivity concepts. The implementation of the OConS ar-
chitectural entities is detailed, as well as the protocol supporting signalling and
communication between them. A scenario where a wireless station needs to se-
lect its access network is then introduced to illustrate the use of the framework.
It is then extended to show how the orchestration process is used to support on-
the-fly integration of other mechanisms such as a dynamic mobility management
scheme which uses tunnels to handle mobility at the network level.

This paper is structured as follows. Section 2 introduces the OConS architec-
ture and presents implementation details of the entities and protocol. Section 3
presents the testbed setup, identifying the OConS components and their inter-
actions. Proof-of-concept experimental results with this setup are reported in
Section 4, while the paper is concluded in Section 5, which also covers directions
for future work.

2 OConS Architecture

In this section, an overview of the OConS design and architecture is first pre-
sented, reminding the reader to its basic functional components and those or-
chestration elements which allow their coordination. We then detail their im-



OConS Framework 3

SOPSOPO

R

OConS Node
DEsEEsIEs

PUB

SUB

VALID

IN
F
O

R
E
G

O

R

OConS Node
DEs EEs IEs

PUB

SUB

VALID

A
D
V

IN
F
O

R
E
G

D
IS
C

C
F
G

U
P
D
A
T
E

R
E
A
D

D
E
L

A
S
S
IG
N

PUB-SUB-VALID

DISC-CFG-REG-INFO

U-R-D-A

OSAP OSAP

I

N

C

A
D
V

D
IS
C

C
F
G

U
P
D
A
T
E

R
E
A
D

D
E
L

A
S
S
IG
N

I

N

C

Fig. 1. Interactions between OConS elements. All communication goes through the
INC, except for service requests through the OSAP, and the tighter SOP–OR link.

plementation and the needed communication protocol, which together form the
basis of a common library to ease the integration of existing mechanisms within
the OConS framework.

2.1 Architecture and Design

All conceptual elements in the OConS framework, as well as their interactions,
is shown in Fig. 1 and described thereafter.

Basic entities. The goal of OConS is to provide an open framework to support
any type of connectivity service. This requires a rather high level of abstraction in
defining its constituent components. In order to manage this intrinsic openness,
three elementary and generic entities have been defined [2], [3].

Information Entities (IE) take care of gathering the relevant information, and
provide it to interested parties following the generic data model defined in [4].

Decision Entities (DE) take data from the IEs and run a decision algorithm in
order to determine which actions need be taken in light of this information.

Execution Entities (EE) enforce the decisions made by the DE and optionally
report the status details of the execution of the task.

Levels of orchestration. To support dynamic configuration, combination and
instantiation of mechanisms and services, the instances of these three basic com-
ponents need to be coordinated. This is the role of the orchestration function.
For the sake of flexibility, it must cover the entire communication scope, thus
bringing about three main orchestration levels [4].

Link Connectivity Services do not span further than one hop and are closely
related to the physical and data-link layers and their operational parameters.

Network Connectivity Services affect the network and transport layers and are
independent of end user applications. They usually involve two or more
nodes.

Flow Connectivity Services are also related to the network and transport layers,
but show a tighter link with the applications and services they support.



4 Luis Diez et al.

Orchestration functionalities. The orchestration function is a key enabler for
the applications, or OConS users, to request specific services from the framework.
They respond to these requests by appropriately configuring the relevant OConS
components.

The Service Orchestration Process (SOP) is in charge of coordinating and over-
seeing all the orchestrations tasks. It keeps track of the OConS mechanisms
which are available and what they can offer. These mechanisms are defined as
a combination of entities (i.e., IEs and EEs) which a particular DE requires
in order to inform and enforce a decision.

The Orchestration Service Access Point (OSAP) is the external interface of
OConS to its users. It is the point of entry for user requests (i.e., connec-
tivity requirements), and that through which OConS can report back about
the available capabilities or status.

The Orchestration Registry (OR) acts as a repository of all the entities within
a node, as well as those discovered on other nodes. These entities can be
combined to instantiate various mechanisms, which are also kept track of
within the OR.

The Orchestration Monitor (OM) retains the statuses of the OConS compo-
nents and mechanisms launched within different OConS-enabled nodes.

OConS messaging. The previously introduced OConS entities and functional-
ities interact with each other by exchanging OConS messages. Dealing with a dis-
tributed set of components for which connectivity might not be fully established
and vary widely, it is important to offer a communication facility which prop-
erly decouples messaging from the underlying communication technology. This is
done through an inter-node communication hub (INC) which is in charge of re-
laying the messages to its destination, either locally or remotely, over whichever
transport method (e.g., local IPC, TCP/IP or Ethernet) is available to reach it.
This is depicted in Fig. 1.

While messages to node-local entities (identified by their locally-attributed
entity ID) can be passed directly, those to remote destinations are encapsu-
lated in OConS packets which are wrapped into the relevant headers for the
selected medium. The INC maintains a unique node ID which is mapped to the
appropriate locator for the selected transport method. To ensure global unique-
ness, these node IDs must be assigned following a random algorithm with good
uniqueness properties. An example of such is that proposed for Unique Local
IPv6 Addresses [5].

2.2 Framework Implementation

We now introduce our implementation of these functional blocks and the
corresponding orchestration logic. The communication model is based on
Request/Response–Notification messages. For this purpose, an OConS protocol
library has been implemented in C/C++ to provide low-level functionalities al-
lowing the use of the OConS protocol and interfaces. The detailed description
of interfaces, messaging and protocols is given in [4], but we summarize it here.



OConS Framework 5

+FillInPacket()

+RefreshData()

+SetParams()

Data Source (DS)

1 1

-Open Communications()

-Process Information Request()

-Process Configuration Request()

-Build Information Response()

-Build Information Notification()

-m_getDataModule : *DS

-m_configuration : vector<ieConf_t>

Information Entity

DS

Fig. 2. Structure of the generic IE object provided by the OConS protocol library.

OConS protocol library. The library implements the common OConS com-
munication facilities to enable both inter-entity and inter-node communications.
It manages direct communication with the local INC and provides helper func-
tions for message manipulation. These helpers are in charge of the encapsulation
within the OConS headers based on which forwarding to the relevant entity or
node through the INC. Message content manipulation is similarly abstracted
from the on-wire TLV (Type, Length, Value)-based data representation from
the entity implementation. Additionaly, the library provides high-level proce-
dures to support the OConS orchestration functionalities, such as mechanism
identification, entities registration or bootstrap management.

This library aims at offering a common background allowing the developer
to implement the entities needed for a new connectivity mechanism, as well as
to setup appropriate orchestration between those entities. From a system point
of view, each entity, as well as the INC, appears as a separate process. The INC
waits for connections of the local entities using IPC mechanisms, and listens on
the various supported remote transport methods for OConS messages. At start-
up, the entities connect to this local IPC and, after an initialisation phase where
its entity ID is determined and its existence is recorded in the local OR, it can
exchange OConS messages with both local and remote entities through the INC.

Generic Information Element template. As they follow a rather regular
pattern, the behaviour of IEs is easily generalised. The library therefore provides
a C++ template for such a generic IE, which we provide as an example of
how it can be used. Fig. 2 shows the structure of this object. It assumes that
each IE is usable and configurable by one or more DEs requiring the exposed
information. The generic IE is able to act both reactively, upon request from a
DE, or proactively, sending it update notifications periodically.

The generic IE includes a reference to an object responsible for providing
the particular information for a given instance. This exemplifies the modularity
of the design, where the OConS layer is shared between all entities, but the
actual operation, such as data collection in the case of an IE, is specific to
the mechanism being provided. In this case, the outer class implements the
Information Entity interface, while the Data Source (DS) class collects the data



6 Luis Diez et al.

from actual sources such as hardware drivers or software systems. It is worth
noting that the DS should be aware of the relevant parts of the OConS data
model and properly represent the collected information according to this model.
It is the role of the FillInPacket() method to do so.

3 Integration Tesbed

We recall that the main goal of this work is the empirical assessment of the
feasibility of the OConS architecture, so as to fill the gap between architectural
descriptions and specifications, and its implementation in real platforms. As the
proposed framework is intended to cope with a wide range of different connec-
tivity technologies and protocols with varied features, it is crucial to confirm
that is it open enough to be effective. We present our experimental testbed work
towards this in this section.

While one driving goal of the OConS framework is its openness, this is
not necessarily the case of the underlying technologies. This limits the choices
when developing such an experimental testbed to those pieces of hardware which
drivers offer the possibility to access and manipulate low-level parameters. More-
over, it is desirable to focus on hardware available off the shelf as this is repre-
sentative of the vast majority of already deployed equipments which OConS is
intended to work atop. Considering these intrinsic limitations, the platform we
developed is based on the IEEE 802.11 technology. The presence of heteroge-
neous networks is emulated by deploying multiple access points, configured to
operate on orthogonal channels.

This approach, which undoubtedly presents some limitations, however also
has clear advantages. Wi-Fi hardware drivers such as MadWifi1 provide ample
access to information and control interfaces, while hostapd(8)2 makes it possible
to use regular computers to deploy access points, therefore easing the deployment
of modifications on the network side.

The proposed testbed implements parts of the overall OConS reference sce-
nario [2], presented in Fig. 3. It comprises two access points and an end-user
terminal. All three implement the OConS framework through the protocol li-
brary introduced in Section 2. The connectivity services available in this testbed
include procedures for access selection and support for dynamic mobility man-
agement. Though often crudely merged in the literature, both mechanisms are
clearly different: access selection takes place at the mobile node and usually
relies on signal quality information from the access elements to decide which
to use, while mobility management leverages in network anchor points to pro-
vide support for session continuity throughout access changes through the use
of IPv6 tunnels [6]. Under the orchestration of the OConS framework these two
mechanisms are able to collaborate, resulting in an improved and more flexible
service.

1 http://madwifi.org
2 http://hostap.epitest.fi/hostapd/

http://madwifi.org
http://hostap.epitest.fi/hostapd/


OConS Framework 7

Content Cloud / Data Centres

AP-A1

AP-A2

AAAAP-A3

OConS

Terminal

Wireless Challenged Networks

Wireless access technologies

Application Traffic

(limited to Challenged Network)

Application Traffic (Multipath)

Mobility Anchoring/Redirection

OpO erarr tor A

domainii

AP-B1

AP-B2

AP-B3

Operator B

domain

Data Centre Interconnect

OConS

Terminal

Mobile Cloud

Data Centre

and Domain

Control Unit

Wireless

Challenged

Network

Dynamic Distributed

Mobility

Management

Multi-Inteeerrrfrr ace

and Pathhh

Selection

Multi-Path

Support fof r

ICN

Mobile Cloud

Data Centre

and Domain

Control Unit

Optimized Data-

Centre Interconnect

Domain

Centralized

Mobility

Optimisation

DTN & Mesh

Support fof r ICN

Multi-Path

Support fof r

ICN

Access Selection

OConS

Terminal

Fig. 3. The OConS overall scenario [2]. It includes mechanisms for end-user mobility
such as access selection and distributed mobility management (bottom right).

The presented scenario supports a dynamic activation of mobility anchors at
the access routers, so that a mobile node (MN) can use direct IP routing for
sessions initiated while using the current access router, whilst forwarding traf-
fic from the previous access routers, acting as temporary mobility anchors. The
OConS approach, unifying these mechanisms into a common framework, enables
them to interact—for example by allowing some triggering events (e.g., layer-2
hand-offs) to enrich the decisions or by considering other pieces of information
describing the connectivity context—to provide a finer-grained and more accu-
rately controlled support of session continuity while providing network access
through the current best access element.

Following the architectural description from Section 2, each of the nodes
implements orchestration functionalities which coordinate the operation of their
functional elements. One OConS mechanisms has been developed which links
both connectivity procedures. It is embodied as one DE located at the MN, one
EE similarly located and takes care of the layer-2 handover (it also triggers the
subsequent layer-3 handover) and various IEs, providing contextual information
so as to enrich the decision making process. The specific IEs and the information
they provide is described below.

Radio channel quality (IELQ) is implemented as a scanning module which in-
forms any subscriber entity about the current quality (SNR or RSSI) of
each access point from a list of available and usable networks. This entity is
located on the MN.



8 Luis Diez et al.

IE_LQ

IE_LQ

/ g

Fig. 4. Basic OConS Orchestration. Entities register to the SOP and OR via the INC.
When all entities composing a mechanism are ready, the DE gets a notification.

User profile (IEUP ) stores information about the type of user requesting a con-
nectivity service. This is used so the DE can distinguish the privileges of a
subscriber and maintain accounting tasks. This entity is also placed at the
MN.

Service requirement (IESR) , also located in the AN, tags each type of data
service to allow their particular management according to their specific re-
quirements (e.g., video streaming or file transfer).

Traffic load (IETL) stores information about the current traffic load at the ac-
cess router, where it is located, so as to support load balancing.

Once all the entities have started up, the first orchestration steps take place.
They comprise registration (Fig. 4), search and configuration (both in Fig. 5
in section 4). During this first discovery procedure, all entities register to the
SOP by means of a regRequest primitive together with their information. This
comprises both the entity type and entity ID as indicated in Fig. 4 (in which
the circled F ’s indicates functionalities which have been implemented jointly
with the INC), which are afterwards stored within the OR. Anytime a new
entity registers, the SOP checks whether some new mechanisms have become
available (that is, all the entities composing the mechanism are registered). If a
new mechanism can be executed, the SOP informs the appropriate DEs about
how to reach the rest of entities. At the bootstrapping the only entity configured
is the DE by setting the IE/EEs which it has to use to perform the mechanism.
The latter configurations (DE–IE) are discussed on the next section.



OConS Framework 9

IE_LQ

IE_LQ

/ g

Fig. 5. Example sequence of OConS messages showing the search and registration of
compliant IEs, their use by a DE, and the execution of the decision by the EE.

In a similar way, any OConS node can also carry out remote discovery pro-
vided there exists a common underlying transport method. In this case, the SOP
starts this remote discovery if some mechanisms required depend on remote en-
tities. It is interesting to highlight the fact that the current implementation
incorporates this degree of flexibility and thus allows a mechanism to be defined
by entities spanning different nodes.

4 Proof of Concept

This section presents some of the tests carried out on the testbed presented in
section 3. The objective of these tests was the assessment of the correctness of
the implementation. The points which have been verified to work at the time of
this writing are presented below. Our focus was on the correctness of the OConS
protocol implementation, and its usability to compose a distributed mobility
management service from the available basic elements. Fig. 5 shows a sequence
of OConS messages exchanged during one of the tests. It is based on the output
of a monitoring and configuration GUI application which has been developed to
ease the process of tracking the message exchanges.

The following verifications have been performed.



10 Luis Diez et al.

Entity registration with INC. This point has been previously discussed in Sec-
tion 3. When started, each entity contacts the locally running INC to make
it aware of their existence. This was previously illustrated in the top part of
Fig. 4.

Mechanism dependency check. Upon receiving a registration request, the SOP
checks the availability of a mechanism. If all entities to compose it are avail-
able, the INC informs the DE about the entity types and location, as the
bottom part of Fig. 4.

Inter-entity communication for mechanism composition. The DE is able to cor-
rectly configure the appropriate IEs, requesting information or subscribing
so as to be periodically notified. The EE properly responds to execution
requests from the DE, providing information about the current execution
(this was checked by removing networking privileges from the EE process
and ensuring that it reports a connection failure).

Remote discovery. After the connection the INC starts the remote discovery
service, which allows the DE to become aware of the remote entities which
might extend and enhance the service, in particular with the possibility of
using the IETL mentioned in Section 3.

Algorithms adaptability to context changes. Once the remote discovery has been
carried out, the DE is able to adapt its operation. The selection algorithm
can take into account new information which can be gathered from the re-
mote entities, and react accordingly.

With this testbed setup, we have demonstrated that OConS allows for the
integration of a very flexible platform. It enables easy extension and configura-
tion, as well as the integration of new functionality, in the form of new entities
which conforms to the framework. Moreover, a GUI allowing to monitor the in-
formation exchange and offering possibility of parsing their contents has been
developed. This therefore complements the OConS protocol library with an in-
valuable debugging tool.

5 Conclusions

In spite of the relevance that the research on the Future Internet realm has
recently gained, there is a clear need to foster the assessment of the corresponding
architectures, protocols, techniques and algorithms over real testbeds. This is a
crucial point to facilitate their forthcoming rollout. It is one of the leitmotifs
of the SAIL project, which is supporting implementation-related activities. The
Open Connectivity Services framework, which is one of the main components
of the SAIL solution, is also pursuing this goal. This paper has presented an
implementation of the OConS framework and its deployment over a real testbed.
It described the OConS architectural entities and introduced the role played
by the orchestration process, as a means to enable the integration of various
mechanisms by the composition of various functional elements.

As an illustrative example we have shown the integration of an enhanced
access selection process with a dynamic mobility management procedure, using



References 11

the possibilities which are brought about by the OConS framework. Due to the
intrinsic limitations of available technologies (especially considering the need to
develop functionalities on the network side), we have used a Wi-Fi based testbed,
although the implementation is generic enough so as to be used on top of any
other technology.

Based on this preliminary demonstration, several lines of action have been
opened. First of all we aim at introducing additional mechanisms (for instance,
flow management and multi-path), orchestrating them to offer a better service
to the OConS user. Besides, the current testbed will be extended so as to inte-
grate different mobility management solutions. We will also foster the integration
with the other SAIL components (NetInf and CloNe). Furthermore, we intend
to release the OConS protocol library described here to let the community take
advantage of the service composition flexibility afforded by the OConS frame-
work.

Acknowledgments

This work is being carried within the SAIL Project under Grant Agreement
Number 257448 of the Seventh Framework Programme of the European Union.

References

[1] SAIL project. Description of Project Wide Scenarios and Use Cases. Deliv-
erable FP7-ICT-2009-5-257448-SAIL/D2.1(D-A.1). EC Information Society
Technologies Programme, Apr. 2011.

[2] SAIL project. Architectural Concepts of Connectivity Services. Deliverable
FP7-ICT-2009-5-257448-SAIL/D-4.1(D-C.1). EC Information Society Tech-
nologies Programme, July 2011.

[3] R. Agüero et al. “OConS: Towards Open Connectivity Services in the Fu-
ture Internet”. In: MONAMI 2011, Third International ICST Conference
on Mobile Networks & Management. Ed. by S. Sargento and R. Agüero. Lec-
ture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering. Aveiro, Portugal: Springer-Verlag Berlin,
Sept. 2011.

[4] SAIL project. Architecture and Mechanisms for Connectivity Services. De-
liverable FP7-ICT-2009-5-257448-SAIL/D4.2(D-C.2). EC Information So-
ciety Technologies Programme, July 2012.

[5] R. M. Hinden and B. Haberman. Unique Local IPv6 Unicast Addresses.
RFC 4193. Fremont, CA, USA: RFC Editor, Oct. 2005.

[6] D. B. Johnson, C. E. Perkins, and J. Arkko. Mobility Support in IPv6. RFC
6275. Fremont, CA, USA: RFC Editor, July 2011.


	Design and Implementation of the Open Connectivity Services Framework
	Luis Diez, Olivier Mehani, Lucian Suciu, Ramón Agüero

