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Mobile Privacy Threats

• Mobile devices
• Always with the user
• Always on
• Always connected

• Trove of sensitive data
• Private details→ identity theft
• Personal habits→ profiling

• Third-party applications can access all this data
• Permissions systems easily side-stepped

• User don’t understand/care1

• Developers ask too much (demo available)
• Colluding applications2

• Need more effective systems
1A. P. Felt et al. (June 2012). “Android Permissions: User Attention, Comprehension,

and Behavior”. In: SOUPS 2012.
2C. Marforio et al. (Dec. 2012). “Analysis of the Communication Between Colluding

Applications on Modern Smartphones”. In: ACSAC 2012.
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TaintDroid

• TaintDroid3

• Dynamic Taint Analysis system (see next slide)

• Taint data from sensitive sources (camera,
contacts, . . . )

• Track it across untrusted applications (blue
blocks)

• Warns when data reaches an untrusted sink
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• Derivative protection systems (block the data)
• AppFence4

• MOSES5

3W. Enck et al. (Oct. 2012). “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”. In: OSDI 2010.

4P. Hornyack et al. (Oct. 2011). ““These Aren’t the Droids You’re Looking For:”
Retrofitting Android to Protect Data from Imperious Applications”. In: CCS 2011.

5G. Russello et al. (June 2012). “MOSES: Supporting Operation Modes on
Smartphones”. In: SACMAT 2012.
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TaintDroid
Taint Analysis Primer

Function 𝐹1  

computes on X to 
produce Y 
𝑌 𝐹1 (𝑋) 

𝑌 becomes tainted 

𝑍 is used in 

Execution within 
𝐹3 

𝑍  𝐹3(𝑌) 

𝑍 becomes tainted 

Untrusted 
Input  (𝑋) 

from outside 
taint tracking 

system 

Dynamic Taint Tracking System 

Function 𝐹2  

computes on Y to 
produce Z 
𝑍  𝐹2(𝑌) 

 
 

 
Taint tracking system 

logs and alerts the 
system at this point. 

• Dynamic Taint Analysis
• Mark variables with some

information
• Propagate marks across

functions
• Track data through execution

paths
• Help to the developer

• Avoid using unvalidated input or
derivatives

• Built in many languages (Perl,
Ruby, . . . )

• Assumptions
• Code is trusted
• Data is not
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TaintDroid
Limitations of the approach

• Known limitations of Dynamic Taint Analysis6

• Control dependence variable assignation
• Subversion of benign code
• Side channel attacks

• Assumptions no longer valid
• Expected: Trusted code/untrusted data
• Actual: Sensitive data/untrusted code

6L. Cavallaro et al. (July 2008). “On the Limits of Information Flow Techniques for
Malware Analysis and Containment Detection of Intrusions and Malware, and
Vulnerability Assessment”. In: DIMVA 2008.
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Attacks Against TaintDroid
Attack model

• ScrubDroid7

• Android application (1)
• Server receiving the data

• Implement attacks from
vulnerable classes

• Obtain XTainted from sensitive
sink (2)

• Untaint the variable
(YUntainted) (3)

• Leaks the information without
warning (4)

Private Data 

Attacks  against 
Taint Analysis 

Malicious App 

𝑋𝑇𝑎𝑖𝑛𝑡𝑒𝑑  

Taint Tracking System Attacker 

Network Access 

𝑌𝑈𝑛𝑡𝑎𝑖𝑛𝑡𝑒𝑑  

Networked 
Database Server 

1 2 

3 4 

7http://nicta.info/scrubdroid
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Attacks Against TaintDroid
Control dependence

• Use conditional execution paths not directly using the tainted
variable

• Implemented in ScrubDroid
Simple encoding Choose YUntainted from an array so it matches

XTainted
Count-to-X Increment YUntainted until it is equal to XTainted

Deliberate exception Trigger XTainted exceptions for which the rescue
path increments YUntainted

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 8/14



Attacks Against TaintDroid
Code subversion

• Use otherwise benign code/tools to create a malevolent chain

• Implemented in ScrubDroid
System command Pass XTainted to system command (e.g., echo)

which outputs it verbatim, to be captured as YUntainted
System-file hybrid Use unprotected system command to write

XTainted in a file, to be read as YUntainted
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Attacks Against TaintDroid
Side channels

• Use unmonitored channel to pass information

• Implemented in ScrubDroid
Timing Set a timer to expire XTainted amount of time ahead,

compute the time difference as YUntainted
File length Write XTainted random bytes in a file, read its lenght

metadata as YUntainted
Bitmap cache Render XTainted on the screen, OCR YUntainted out of

the cache
Text scaling Change a widget’s property to XTainted, retrieve it as

YUntainted
Direct buffer Write XTainted into a memory buffer, read YUntainted out
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Attacks Against TaintDroid
Evaluation: Success Rates

• Process for each attack
1 Leak untainted

variable YUntainted
2 Leak tainted variable

XTainted
3 Leak untainted

variable Y ′
Untainted

• All false negatives
• Direct buffer attack fix

(2012-10-06..17d49f89)
leads to false
positives

Technique YUntainted XTainted Y ′
Untainted

Tainted Variable – X –
File R/W (ovrwr.) – X –
File R/W (app.) – X X (FP)

Simple Encoding – – (FN) –
Count-to-X – – (FN) –
Exception-Error – – (FN) –
Shell Command – – (FN) –
File-Shell Hybrid – – (FN) –
Timekeeper – – (FN) –
File Length – – (FN) –
Clipboard Length – – (FN) –
Bitmap Cache – – (FN) –
Bitmap Pixel – – (FN) –
Text Scaling – – (FN) –
Direct Buf. (Rel.) – – (FN) –
Direct Buf. (Git) – X X (FP)
Remote Control – – (FN) –
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Attacks Against TaintDroid
Evaluation: Timing

• Two types of
data

• IMEI (15 B)
• 5 s sound

recording
from
microphone
(11 kB)

• Not practical but
doable

Technique
IMEI 5 s audio

avg. [ms] σ avg. [ms] σ

Tainted Variable 3.48 4.07 364.97 67.31
File R/W 47.62 19.56 386.01 49.85

Simple Encoding 9.55 4.55 795.72 49.12
Count-to-X 10.14 5.41 8278.64 84.20
Exception-Error 53.22 22.09 —
Shell Command 72.22 12.69 —
File-Shell Hybrid 78.10 25.80 —
Timekeeper 1037.66 82.60 —
File Length 72.37 21.78 —
Clipboard Length 84.89 18.61 —
Bitmap Cache 312.27 24.45 —
Bitmap Pixel 35.95 12.35 2899.80 172.56
Text Scaling 12.92 5.91 3022.58 84.12
Direct Buffer 4.00 3.67 2988.70 87.69
Remote Control 2583.10 976.82 —
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Attacks Against TaintDroid
Mitigation

• Overmark
• Increase false positives (e.g., Direct Buffer attack)
• Impractical in case of blocking systems

• Manual marking
• Requires cooperative developer

• Include comparisons to propagation rules
• Most control dependence attacks use them for checks
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Conclusion

• Taint analysis works as a help for the developer
• identify use of untrusted data in trusted code

• but is limited when used against them
• untrusted code can be written to misuse and leak sensitive data

• Future work
• Study static analysis in this context

• ScrubDroid is Open Source8

• Main author: <golam.sarwar@nicta.com.au>
• Longer technical report available at
http://www.nicta.com.au/pub?id=7091

• Demonstration available!

Thanks — <olivier.mehani@nicta.com.au>

8http://nicta.info/scrubdroid
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