
On the Effectiveness of Dynamic Taint Analysis for
Protecting Against Private Information Leaks on

Android-based Devices

Golam Sarwar, Olivier Mehani,
Roksana Boreli, Mohamed-Ali Kaafar

SECRYPT 2013, 31 July 2013
NICTA Funding and Supporting Members and Partners

• Mobile Privacy Threats

• TaintDroid
• Taint Analysis
• Limitations

• Attacks Against TaintDroid
• Description
• Evaluation
• Mitigation

• Conclusion

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 2/14

Mobile Privacy Threats

• Mobile devices
• Always with the user
• Always on
• Always connected

• Trove of sensitive data
• Private details→ identity theft
• Personal habits→ profiling

• Third-party applications can access all this data
• Permissions systems easily side-stepped

• User don’t understand/care1

• Developers ask too much (demo available)
• Colluding applications2

• Need more effective systems
1A. P. Felt et al. (June 2012). “Android Permissions: User Attention, Comprehension,

and Behavior”. In: SOUPS 2012.
2C. Marforio et al. (Dec. 2012). “Analysis of the Communication Between Colluding

Applications on Modern Smartphones”. In: ACSAC 2012.
ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 3/14

TaintDroid

• TaintDroid3

• Dynamic Taint Analysis system (see next slide)

• Taint data from sensitive sources (camera,
contacts, . . .)

• Track it across untrusted applications (blue
blocks)

• Warns when data reaches an untrusted sink

Resource
Manager

Application Frameworks

--- Home Contacts Phone Browser Email

Applications

Location
Manager

Activity
Manager

Window
Manager

Content
Providers

Package
Manager

Telephony
Manager

Notification
Manager

View System

Libraries

Surface
Manager

Media
Framework

SQLite WebKit

LibC SSL FreeType SGL

Android Runtime

Linux Kernel

Core
Libraries

Dalvik Virtual
Machine

Display
Driver

Camera
Driver

Flash Memory
Driver

Binder
(IPC)Driver

WiFi
Driver

Audio
Driver

Power
Management

• Derivative protection systems (block the data)
• AppFence4

• MOSES5

3W. Enck et al. (Oct. 2012). “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”. In: OSDI 2010.

4P. Hornyack et al. (Oct. 2011). ““These Aren’t the Droids You’re Looking For:”
Retrofitting Android to Protect Data from Imperious Applications”. In: CCS 2011.

5G. Russello et al. (June 2012). “MOSES: Supporting Operation Modes on
Smartphones”. In: SACMAT 2012.

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 4/14

TaintDroid
Taint Analysis Primer

Function 𝐹1

computes on X to
produce Y
𝑌 𝐹1 (𝑋)

𝑌 becomes tainted

𝑍 is used in

Execution within
𝐹3

𝑍  𝐹3(𝑌)

𝑍 becomes tainted

Untrusted
Input (𝑋)

from outside
taint tracking

system

Dynamic Taint Tracking System

Function 𝐹2

computes on Y to
produce Z
𝑍  𝐹2(𝑌)

Taint tracking system

logs and alerts the
system at this point.

• Dynamic Taint Analysis
• Mark variables with some

information
• Propagate marks across

functions
• Track data through execution

paths
• Help to the developer

• Avoid using unvalidated input or
derivatives

• Built in many languages (Perl,
Ruby, . . .)

• Assumptions
• Code is trusted
• Data is not

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 5/14

TaintDroid
Limitations of the approach

• Known limitations of Dynamic Taint Analysis6

• Control dependence variable assignation
• Subversion of benign code
• Side channel attacks

• Assumptions no longer valid
• Expected: Trusted code/untrusted data
• Actual: Sensitive data/untrusted code

6L. Cavallaro et al. (July 2008). “On the Limits of Information Flow Techniques for
Malware Analysis and Containment Detection of Intrusions and Malware, and
Vulnerability Assessment”. In: DIMVA 2008.

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 6/14

Attacks Against TaintDroid
Attack model

• ScrubDroid7

• Android application (1)
• Server receiving the data

• Implement attacks from
vulnerable classes

• Obtain XTainted from sensitive
sink (2)

• Untaint the variable
(YUntainted) (3)

• Leaks the information without
warning (4)

Private Data

Attacks against
Taint Analysis

Malicious App

𝑋𝑇𝑎𝑖𝑛𝑡𝑒𝑑

Taint Tracking System Attacker

Network Access

𝑌𝑈𝑛𝑡𝑎𝑖𝑛𝑡𝑒𝑑

Networked
Database Server

1 2

3 4

7http://nicta.info/scrubdroid
ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 7/14

http://nicta.info/scrubdroid

Attacks Against TaintDroid
Control dependence

• Use conditional execution paths not directly using the tainted
variable

• Implemented in ScrubDroid
Simple encoding Choose YUntainted from an array so it matches

XTainted
Count-to-X Increment YUntainted until it is equal to XTainted

Deliberate exception Trigger XTainted exceptions for which the rescue
path increments YUntainted

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 8/14

Attacks Against TaintDroid
Code subversion

• Use otherwise benign code/tools to create a malevolent chain

• Implemented in ScrubDroid
System command Pass XTainted to system command (e.g., echo)

which outputs it verbatim, to be captured as YUntainted
System-file hybrid Use unprotected system command to write

XTainted in a file, to be read as YUntainted

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 9/14

Attacks Against TaintDroid
Side channels

• Use unmonitored channel to pass information

• Implemented in ScrubDroid
Timing Set a timer to expire XTainted amount of time ahead,

compute the time difference as YUntainted
File length Write XTainted random bytes in a file, read its lenght

metadata as YUntainted
Bitmap cache Render XTainted on the screen, OCR YUntainted out of

the cache
Text scaling Change a widget’s property to XTainted, retrieve it as

YUntainted
Direct buffer Write XTainted into a memory buffer, read YUntainted out

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 10/14

Attacks Against TaintDroid
Evaluation: Success Rates

• Process for each attack
1 Leak untainted

variable YUntainted
2 Leak tainted variable

XTainted
3 Leak untainted

variable Y ′
Untainted

• All false negatives
• Direct buffer attack fix

(2012-10-06..17d49f89)
leads to false
positives

Technique YUntainted XTainted Y ′
Untainted

Tainted Variable – X –
File R/W (ovrwr.) – X –
File R/W (app.) – X X (FP)

Simple Encoding – – (FN) –
Count-to-X – – (FN) –
Exception-Error – – (FN) –
Shell Command – – (FN) –
File-Shell Hybrid – – (FN) –
Timekeeper – – (FN) –
File Length – – (FN) –
Clipboard Length – – (FN) –
Bitmap Cache – – (FN) –
Bitmap Pixel – – (FN) –
Text Scaling – – (FN) –
Direct Buf. (Rel.) – – (FN) –
Direct Buf. (Git) – X X (FP)
Remote Control – – (FN) –

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 11/14

Attacks Against TaintDroid
Evaluation: Timing

• Two types of
data

• IMEI (15 B)
• 5 s sound

recording
from
microphone
(11 kB)

• Not practical but
doable

Technique
IMEI 5 s audio

avg. [ms] σ avg. [ms] σ

Tainted Variable 3.48 4.07 364.97 67.31
File R/W 47.62 19.56 386.01 49.85

Simple Encoding 9.55 4.55 795.72 49.12
Count-to-X 10.14 5.41 8278.64 84.20
Exception-Error 53.22 22.09 —
Shell Command 72.22 12.69 —
File-Shell Hybrid 78.10 25.80 —
Timekeeper 1037.66 82.60 —
File Length 72.37 21.78 —
Clipboard Length 84.89 18.61 —
Bitmap Cache 312.27 24.45 —
Bitmap Pixel 35.95 12.35 2899.80 172.56
Text Scaling 12.92 5.91 3022.58 84.12
Direct Buffer 4.00 3.67 2988.70 87.69
Remote Control 2583.10 976.82 —

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 12/14

Attacks Against TaintDroid
Mitigation

• Overmark
• Increase false positives (e.g., Direct Buffer attack)
• Impractical in case of blocking systems

• Manual marking
• Requires cooperative developer

• Include comparisons to propagation rules
• Most control dependence attacks use them for checks

ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 13/14

Conclusion

• Taint analysis works as a help for the developer
• identify use of untrusted data in trusted code

• but is limited when used against them
• untrusted code can be written to misuse and leak sensitive data

• Future work
• Study static analysis in this context

• ScrubDroid is Open Source8

• Main author: <golam.sarwar@nicta.com.au>
• Longer technical report available at
http://www.nicta.com.au/pub?id=7091

• Demonstration available!

Thanks — <olivier.mehani@nicta.com.au>

8http://nicta.info/scrubdroid
ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 14/14

golam.sarwar@nicta.com.au
http://www.nicta.com.au/pub?id=7091
olivier.mehani@nicta.com.au
http://nicta.info/scrubdroid

Conclusion

• Taint analysis works as a help for the developer
• identify use of untrusted data in trusted code

• but is limited when used against them
• untrusted code can be written to misuse and leak sensitive data

• Future work
• Study static analysis in this context

• ScrubDroid is Open Source8

• Main author: <golam.sarwar@nicta.com.au>
• Longer technical report available at
http://www.nicta.com.au/pub?id=7091

• Demonstration available!

Thanks — <olivier.mehani@nicta.com.au>

8http://nicta.info/scrubdroid
ScrubDroid Copyright NICTA 2013 G. Sarwar, et al. (O. Mehani) 14/14

golam.sarwar@nicta.com.au
http://www.nicta.com.au/pub?id=7091
olivier.mehani@nicta.com.au
http://nicta.info/scrubdroid

	Mobile Privacy Threats
	TaintDroid
	Taint Analysis
	Limitations

	Attacks Against TaintDroid
	Description
	Evaluation
	Mitigation

	Conclusion

