
On the Effectiveness of Dynamic Taint Analysis for Protecting
Against Private Information Leaks on Android-based Devices∗

Golam Sarwar (Babil),1,2 Olivier Mehani,1 Roksana Boreli,1,2 and Mohamed-Ali Kaafar1,3
1NICTA, Eveleigh, Sydney, NSW, Australia

2UNSW, Kensington, Sydney, NSW, Australia
3Inria, Grenoble, Rhône-Alpes, France

{golam.sarwar,olivier.mehani,roksana.boreli,dali.kaafar}@nicta.com.au

Keywords: Dynamic Taint Analysis, Privacy, Malware, Anti-Taint-Analysis, Anti-TaintDroid, Android

Abstract: We investigate the limitations of using dynamic taint analysis for tracking privacy-sensitive in-
formation on Android-based mobile devices. Taint tracking keeps track of data as it propagates
through variables, inter-process messages and files, by tagging them with taint marks. A popu-
lar taint-tracking system, TaintDroid, uses this approach in Android mobile applications to mark
private information, such as device identifiers or user’s contacts details, and subsequently issue
warnings when this information is misused (e.g., sent to an undesired third party). We present
a collection of attacks on Android-based taint tracking. Specifically, we apply generic classes of
anti-taint methods in a mobile device environment to circumvent this security technique. We have
implemented the presented techniques in an Android application, ScrubDroid. We successfully
tested our app with the TaintDroid implementations for Android OS versions 2.3 to 4.1.1, both
using the emulator and with real devices. Finally, we evaluate the success rate and time to com-
plete of the presented attacks. We conclude that, although taint tracking may be a valuable tool
for software developers, it will not effectively protect sensitive data from the black-box code of a
motivated attacker applying any of the presented anti-taint tracking methods.

1 INTRODUCTION
Mobile devices have become an integral part

of our daily lives, with hugely increased usage of
various applications and services in addition to
their original purpose of enabling mobile commu-
nications. The reliance on such devices has also
resulted in an increased amount of personal in-
formation which is either stored locally, or poten-
tially available through various peripherals such
as built-in GPS or camera. Lists of contacts, per-
sonal or work emails, browsing history and other
private data can be accessed by the software run-
ning on such devices and forwarded to external
entities. With their ability to easily access, install
and run applications from various sources, these
mobile devices have, perhaps unsurprisingly, be-
come a prime target for private data-collecting
applications bundled with, or sometimes mas-

∗This paper is a shortened version of the technical
report available at http://www.nicta.com.au/pub?
id=7092

querading as, legitimate software (Egele et al.,
2011; Hornyack et al., 2011). Collecting informa-
tion from user’s mobile devices has actually be-
come a line of business (e.g., Understanding Car-
rier IQ Technology 2011). Such data may be used
for a number of purposes, ranging from identity
theft to profiling and tracking for purposes of tar-
geted advertising (Grace et al., 2012).

The Android mobile operating system in-
cludes a permissions framework whereby, upon
installation, an application has to explicitly re-
quest access to specific resources from the user.
However, it is not uncommon that application de-
velopers request access to a greater number of re-
sources than what is needed for the application
to perform the intended functionality (Felt et al.,
2011), and users are usually unable to properly
evaluate these requests (Felt et al., 2012). More-
over, users do not have a choice in regards to
specific permissions, as an app can only be in-
stalled if the users agrees to all that is requested.
Therefore, additional methods to protect the pri-

http://www.nicta.com.au/pub?id=7092
http://www.nicta.com.au/pub?id=7092

vacy of users’ data are required. A number of
tools to achieve this have been developed in re-
cent years.2 Within the research community, the
TaintDroid (Enck et al., 2012) tool has received a
lot of attention and a number of extensions have
also been proposed and implemented (Hornyack
et al., 2011; Russello et al., 2012). This patch
for the Android system uses dynamic taint anal-
ysis (Newsome and Song, 2005; Schwartz et al.,
2010) to track sensitive data as it is used by
(untrusted) apps. It “taints” sensitive data, and
warns the user when these variables are leaked.

Prior work on taint analysis has already
identified both conceptual and technical limita-
tions (Cavallaro et al., 2007, 2008; Schwartz et
al., 2010), that can be exploited to avoid detec-
tion. Dynamic anti-taint techniques have been
classified by Cavallaro et al. (2008).

In this paper, we investigate the level of pro-
tection that dynamic taint tracking delivers to
user’s sensitive data in the Android environment.
We identify the evasive attacks on taint tracking
that a malicious code can perform to create taint-
free variables from tainted objects. To the best
of our knowledge, this is the first paper that sys-
tematically evaluates the applicability of dynamic
anti-taint tracking techniques in the mobile de-
vice environment. Our focus here is on dynamic
taint analysis and that the use of static analysis,
which is sometimes suggested as a complemen-
tary technique in these contexts (e.g., Graa et al.,
2012), is out of the scope of this paper.

Our contributions are as follows. We eval-
uate the effectiveness of generic anti-taint
tracking methods within the Android OS ar-
chitecture (on versions 2.3 to 4.1.1 of the patched
OS), by implementing a series of attacks in a
proof-of-concept application, ScrubDroid. Specif-
ically, we evaluate the effectiveness against the
following classes of attacks: control depen-
dence, which exploits conditional constructs to
breach the taint propagation mechanism; sub-
version of benign code, in which the attacker
uses the existing code trusted by the host, abus-
ing its functionality to remove taint marks; and
side channel, that exploits the use of media that
are not considered as capable of carrying infor-
mation (e.g., non-monitored memory) . We eval-
uate experimentally the success rates for all pre-
sented attacks. Finally, we characterise the time
to complete the attacks for two types of leaked
data: mobile device’s International Mobile Sta-

2For example, PDroid and LBE Privacy Guard,
available from Google Play.

tion Equipment Identity (IMEI) number and a 5 s
audio recording from the mobile device’s micro-
phone. We conclude that dynamic anti-taint
tracking techniques are not sufficient to pro-
vide adequate levels of protection against
software that is designed to evade taint tracking.

The organisation of the rest of this paper is as
follows: in Section 2, we review the background
and related work. In Section 3 we introduce our
attacker model and, in the following Section 4,
detail our specific anti-taint attacks which can be
successfully applied to circumvent taint tracking
with TaintDroid. We provide our experimental
evaluation of the attacks, including the success
rate and time to complete in Section 5. In Sec-
tion 6 we discuss our findings and conclude this
paper in Section 7.

2 BACKGROUND
2.1 Taint Tracking
Taint analysis was originally proposed as a
method to track the lifetime of data in a pro-
gram (Chow et al., 2004). It is an information
flow analysis technique which works by keeping
track of variables containing data with some prop-
erty by tagging them with taint marks. The
taint tracking system follows all the marked vari-
ables and their derivatives until the end of their
life-cycle. Dynamic taint analysis (Newsome and
Song, 2005) is an extension of the technique to
perform this data tracking in real-time, as the
program is executed. Taint tracking mechanisms
have been implemented in a number of program-
ming languages (e.g. perlsec - Perl security 2012;
Thomas and Hunt, 2001), as a way to support the
developer’s task of writing valid code.

More recently, the use of the technique has
seen a renewed interest for malware analysis and
detection. Ho et al. (2006) proposed to track in-
put from the network to untrusted code running
locally, to ensure it does not get executed (e.g.,
commands from a command and control system).
The Panorama system (Yin et al., 2007), flags
potentially malicious code by identifying how it
uses sensitive data it captures. Similar concepts
are applied to prevent Android applications from
accessing private data and silently leaking it to
unwanted third-parties, either in real-time on the
device with TaintDroid (Enck et al., 2012), or
even earlier on in the App markets, with AppIn-
spector (Gilbert et al., 2011).

A noteworthy property of this second class of
approaches is that they have fundamentally dif-
ferent assumptions in regards to trust in the var-

ious elements involved in the system. While in
the initial proposals, taint analysis was a support
tool for the developer, in the context of malware
analysis it is actually a tool to use against the
(malware) developer; conversely, input data, pre-
viously untrusted, is now the item to protect.

2.2 TaintDroid
TaintDroid (Enck et al., 2012) is an implemen-
tation of dynamic taint analysis for the Android
platform. It is implemented as an extension to
the Dalvik virtual machine, and can oversee all
activity which runs above it.

TaintDroid uses the concepts of taint sources,
from which sensitive information (e.g., IMEI, text
messages, contacts, GPS data or picture from
the mobile device’s camera) is obtained, and
taint sinks, which are interfaces to the outside
world (e.g., using data networks or sending SMSs)
where tainted information is usually not expected
to be sent. When tainted data reaches a taint
sink, TaintDroid issues a warning to the user. A
noteworthy point is that only system Java Native
Interface (JNI) calls to known system libraries are
allowed, excluding all third-party ones.

As TaintDroid uses dynamic taint tracking to
protect sensitive user information from untrusted
code, it shares the limitations of dynamic taint
analysis (Cavallaro et al., 2007, 2008; Schwartz
et al., 2010). Enck et al. (2012) acknowledge
that TaintDroid is vulnerable to control depen-
dence attacks as well as some side-channel at-
tacks. Nonetheless, user data-protection solu-
tions like AppFence (Hornyack et al., 2011) and
MOSES (Russello et al., 2012) have been built
based on TaintDroid, with the added functional-
ity of blocking of data leaks, rather than just issu-
ing warnings. Both the generic anti-taint track-
ing methods and the specific attacks we present
in Section 4 will also apply to these systems and
can be used to bypass the security they provide.

3 ATTACK MODEL
Our attack model is summarised in Figure 1.

The attacker is a developer, who produces an ap-
plication to be executed on a third-party system.
The goal of the application is to extract sensi-
tive information from this system and send it to
a collection system they control. We assume the
application is willingly installed by the user (step
1), and do not consider potential infection vec-
tors. However, we also assume this user is wary
of such applications, and runs them under a dy-
namic taint tracking system to ensure none of the
private data is transferred to the network.

Private Data

Attacks against
Taint Analysis

Malicious App

𝑋𝑇𝑎𝑖𝑛𝑡𝑒𝑑

Taint Tracking System Attacker

Network Access

𝑌𝑈𝑛𝑡𝑎𝑖𝑛𝑡𝑒𝑑

Networked
Database Server

1 2

3 4

Figure 1: Our attack model against dynamic taint
analysis used for detection of malware leaking sensi-
tive information.

Rather than subverting the taint sources (step
2) or sinks (step 4), our attacker focuses on the
taint-propagation chain (step 3). The attacker’s
objective is therefore to exploit the limitations we
identify in the next section to remove the mark
of a tainted variable XTainted, transforming it into
YUntainted and silently leaking it to the network.

Next, we present the algorithms of the attacks
that we have implemented in our PoC applica-
tion, discussed in Section 5. While some attacks
exploit components which are explicitly not pro-
tected by TaintDroid, others rely on the intrinsic
(generic) limitations of using dynamic taint track-
ing for malware analysis.

4 ANTI-TAINT-ANALYSIS
TECHNIQUES

In this section we introduce the generic classes
of attacks against taint-based data leak protec-
tion. In the following, we assume that XTainted is
a single byte, however, the attacks presented are
applicable to any type of data.

4.1 Control Dependence
Basic taint propagation is usually limited to di-
rect assignments. Assignments such as Y ←
f(XTainted) will effectively propagate the taint to
Y . As acknowledged by many (Enck et al., 2012;
Newsome and Song, 2005), this can be defeated
with a trivial, if convoluted, construct using the
tainted variable XTainted in a conditional and as-
signing a known-untainted value to YUntainted.
4.1.1 Simple Encoding Attack
Array indexing attacks, where XTainted is used to
index an array of untainted variables to assign to
YUntainted can be successfully avoided by propa-
gating the taint of both the array and the index to
the assigned variable. However, a taint-free ver-
sion of the index can be obtained using control-
dependent assignment. This is shown in Algo-

rithm 1 where a value matchingXTainted is chosen
from an untainted array (e.g., the table of ASCII
characters) when it corresponds to XTainted, and
is assigned to YUntainted. Since there is no direct
assignment nor propagation of data from XTainted

to YUntainted, variable YUntainted is never tainted.

Algorithm 1 Simple Encoding Attack
for each symbol ∈ AsciiTable do

if symbol = XTainted then
YUntainted ← symbol

end if
end for

4.1.2 Count-to-X Attack
Instead of traversing an array in search for the
value related to XTainted, the count-to-X attack
recreates the value one incrementation at a time,
until YUntainted matches XTainted.
4.1.3 Deliberate Exception Attack
Another way to alter the control flow depending
on the value of a tainted variable is by deliber-
ately introducing execution paths which will reli-
ably terminate with an exception. The exception
handler can then be used to unconditionally set
taint-free variables to values related to the known
value ofXTainted leading to that exception. It can,
for example, keep count of how many times it has
been called as the representation of XTainted.

4.2 Subversion of Benign Code
Rather than writing code to manipulate tainted
data directly, benign code, that is, code trusted
by the host, can be subverted into manipulating
and leaking sensitive data. Either data structures
or their contents can be modified, so that the
information intended for transfer to a legitimate
peer is instead leaked to the attacking third-party.
In this class of attacks we leverage unprotected
system code to temporarily store XTainted, and
extract it as YUntainted.
4.2.1 System Command Attack
It is possible to leverage system commands to
scrub the mark off the variables. The goal here
is to subvert a system utility to print the value
of XTainted somewhere in its output stream for
capture, taint-free, in YUntainted.

The echo system command is the most
straightforward, but many other utilities can be
used for the same purpose, as long as their out-
put contains the value of their input (or command
line arguments). Any shell command that simply
produces an error message containing the input is
vulnerable. We have analysed the Android Linux

binaries present in the /system/bin/ directory
of Android Jelly Bean (version 4.1.1) and found
more than 40 executables to be vulnerable for this
kind of attack. None of these commands requires
the Android device to be rooted nor have super-
user permission to execute.
4.2.2 System–File Hybrid Attack
The previous attack can be further extended by
separating the write and read steps needed to ob-
tain a taint-free variable. A file can be created in
some storage area, with the tainted information
as its content, and later be read. If either the read
or write step does not properly propagate taint
markings, the resulting variable is taint-free.

As described by Enck et al. (2012), file taint-
ing is implemented in a way similar to variable
tainting. Whenever a tainted variable is writ-
ten to a file, that file is also marked as tainted.
Any subsequent reading of data from that file
into a new variable will mark that variable as
tainted. Using a system command attack (e.g.,
cat /path/X_tainted) to read the file back into
the malicious application allows to break the
taint-propagation chain and produce YUntainted.

4.3 Side Channels
Side channel attacks are a generic class cover-
ing the use of any medium that can be abused
to represent information, even if it is not their
prime purpose. Such medium is often overlooked
by taint-checking mechanisms, and not effectively
protected. These attacks might be the hardest to
protect against as they cover the entire system.
4.3.1 Timing Attack
Timing attacks rely on the specific side channel
created by the time it takes to perform some task.
They can be performed from within a program ac-
tively trying to leak tainted data by using delay
loops with a variable duration depending on the
value of a tainted variable. They are based on
the availability of a system clock readable with-
out tainting. The difference in time readings be-
fore and after a waiting period, which duration is
based on the value of a tainted variable, is not it-
self tainted, and can be assigned to our taint-free
output variable.

Depending on the system, a millisecond res-
olution may be sufficient for accurate results.
In our PoC, we observed period inaccuracies
of around 3–10ms, resulting in YUntainted =
XTainted + ε where ε ∈ [0, 10]ms. Using a sec-
ond resolution solved the problem (but obviously
made data collection longer). Another option was
to repeat the attack until YUntainted = XTainted

before continuing; while this solution worked re-
liably, its structure made the attack closer to a
control dependence one.
4.3.2 File Length Attack

While a file could be marked due to its contents,
its metadata can be used as an intermediary to
evade taint tracking. In Algorithm 2, random
data is written, one byte at the time, to a file un-
til its size equals the value of XTainted. The size
can then conveniently be read without resulting
in a marked output variable.

Algorithm 2 File Length Attack
F ← CreateNewFileHandle()

z ← 0

while z < XTainted do
WriteOneByte(F)

z ← z + 1

end while
YUntainted ← ReadFileLength(F)

Each symbol in XTainted is set to be repre-
sented by the length of an arbitrary file. Its to-
tal length is then obtained from the system, and
results in a taint-free variable containing the de-
sired element, from which the full YUntainted can
be obtained.

If the system provides a clipboard for appli-
cations to store and exchange temporary data,
a very similar technique can be used: the Clip-
board Length Attack.
4.3.3 Bitmap Cache Attack

Systems with graphical output usually rely on
a cache of the currently displayed screen. This
makes it possible to render the value of XTainted

on the screen, then access the bitmap cache, and
literally read the value from there, for example
using OCR techniques.

In our PoC, we used the standard Android
API for widget manipulation in order to output
the text in a graphical widget, then retrieve the
cached image of its rendering. OCR was then per-
formed using off-the-shelf tools. This was done by
sending the bitmap data to a cloud service provid-
ing OCR over HTTP service. It should however
be possible to write a simple bitmap parser using
the Android Java API without risk of keeping the
taint marking as it is already removed when the
bitmap is obtained from the cache.

A more subtle technique involving interface
widgets and bitmap rendering consists in only
changing one pixel of the image to represent the
current value to untaint, then rereading it into a

fresh, taint-free, YUntainted. This is shown in Al-
gorithm 3, which modifies the arbitrarily chosen
pixel at coordinates 10× 10.

Algorithm 3 Bitmap Pixel Attack
B ← CreateNewBitmap()

// set the pixel at coordinate (10, 10) with XTainted

SetPixel ([10, 10], XTainted → B)

YUntainted ← GetPixel (B, [10, 10])

4.3.4 Text Scaling Attack
This side-channel attack represents a combina-
tion of the last two types: using the properties,
rather than the contents, of graphical elements.
The method presented in Algorithm 4 consists in
setting an arbitrary property of a graphical wid-
get, here the scaling, then retrieving it through
the standard API. Note that the content of the
widget is never changed during this attack.

Algorithm 4 Text Scaling Attack
T ← TextV iewWidget()

T ← SetTextScalingV alue(XTainted)

YUntainted ← GetTextScalingV alue(T)

4.3.5 Direct Buffer Attack
Pointer indirection attacks target the low level
memory access features of the system. In this
particular attack, shown in Algorithm 5, we first
create a memory buffer. We then write a tainted
variable to that buffer at a specific, known, ad-
dress. Later the content address is read back us-
ing another direct memory access. This is suffi-
cient to obtain a taint-free version of the data.

Algorithm 5 Direct Buffer Attack
D ← NewDirectAccessBuffer()

// write XTainted at location 0×XX of buffer D

DirectMemoryWrite(XTainted,0×XX→ D)

// read from memory location 0×XX of buffer D

YUntainted ← DirectMemoryRead(D, 0×00)

In ScrubDroid, this attack works due to an
implementation limitation of TaintDroid that has
been mentioned by Enck et al. (2012). We include
this attack in-line with the classification of Caval-
laro et al. (2008) to demonstrate how easy it is to
perform this type of indirection attacks by manip-
ulating pointers. In our implementation, we have
used Android’s Java New I/O interface (Google
Inc. 2012) to achieve direct memory access. In
a more general context, this attack however re-
mains hard to deflect, save for keeping a taint

mark for each byte of memory, which we consider
impractical.

We also believe a new class of anti-taint track-
ing methods is to be watched out for, where code
execution is delegated to another component of
the system. With GPUs becoming more power-
ful at all-purpose computation, malware could be
envisioned that delegates removal of taint marks
to the graphical unit, rather than performing this
task directly on the CPU.

5 EVALUATION
We have instrumented ScrubDroid, our proof-

of-concept implementation of the attacks pre-
sented in Section 4,3 in order to evaluate various
aspects of the attacks that target TaintDroid.

5.1 Methodology
For the evaluation of a specific attack, the at-
tacker attempts to obtain tainted data, then per-
forms a series of untainting steps specific to the
the attack before finally sending it over the net-
work to a collection server. We evaluate two as-
pects of the attacks: whether they are success-
ful (including the potential for false positives and
negatives), and the time it takes for an attacker
to leak a certain amount of data. We consider
an attack successful if the data has reached the
server without triggering an alert.

Our experimental framework is as follows. For
each attack, we first query non-sensitive (un-
tainted) information. We then query for specific
sensitive information, which should be tainted
and generate a warning upon reaching a taint
sink; this allows us to identify false negatives,
where our attacks succeed. The script finally
asks the system for a second non-sensitive piece
of information, through the same attack; if it is
tainted due to the previous, sensitive, data which
was passed through the particular method, this
is a false positive. Finally, we evaluate how prac-
tical it is for the attacker to conduct the various
proposed attacks by measuring the time it takes
to obtain the leaked variables.

In the experiments, for sensitive data we use
the mobile device’s IMEI number or a 5 s audio
recording acquired a from the device’s internal
microphone.

5.2 Experimental Results
We report, in Table 1a, the results of our exper-
iments evaluating success rates of representative

3The code for this application is available at http:
//nicta.info/scrubdroid

attacks from Section 4 when the attacker is at-
tempting to obtain IMEI. As a reference, we first
tested two naive approaches, which do not try to
remove taint marks: sending the variable directly
from a taint source to a taint sink (Tainted Vari-
able), and writing it to a file prior to reading it
into the taint sink (File R/W); we consider two
cases for the latter where we either overwrite the
contents of the file with subsequent calls, or ap-
pend new data (tainted or otherwise).

We can verify that TaintDroid correctly iden-
tifies the naive approaches, but fails to flag any
of our specific attacks. We note however that the
effectiveness of the Direct Buffer attack differs in
experiments with the two versions of TaintDroid,
the 2012-10-06 release for Android 4.1.1r6, and a
later revision, 17d49f89 in Git. The earlier ver-
sion is vulnerable to the attack, while the later
Git revision properly flags the Direct Buffer at-
tack, however at the cost of a false positive on
the subsequent non-sensitive variable passed in
the same way. This behaviour is similar to the
naive File R/W technique where data is appended
to a file rather than overwritten: once some ele-
ment of the system has been identified as poten-
tially tainted, all variables transiting through it
get tainted too, regardless of their sensitivity. All
other attacks behaved similarly with both ver-
sions.

For timing measurements, we report results
for both IMEI, a 15-byte identifier for GSM de-
vices and a captured 5 s of audio from the internal
microphone, with an average size of 11 kB (a vari-
able bitrate codec is used). Table 1b, shows the
results for selected attacks (some attacks have a
prohibitively long time for the 11 kB of the audio
sample and were consequently not run). All mea-
surements have been run multiple times to ensure
the standard error was less than 5% of the mean
(resulting in 50–200 runs).

The Simple Encoding attack is clearly the
most efficient way to obtain large amounts of
private data (with a speed of 13.82 kBps for au-
dio) while the Direct Buffer technique would have
been the fastest attack for smaller variables (with
a fairly constant 3.72 kBps).

6 POTENTIAL COUNTER
MEASURES AND
DISCUSSION

Clause et al. (2007); Kang et al. (2011) have
proposed techniques to fight control depen-
dence attacks by over-marking all the variables
involved in conditional statements. This, while

http://nicta.info/scrubdroid
http://nicta.info/scrubdroid

Table 1: Experimental results: (a) Success rates and potential for errors. Checks indicate TaintDroid warnings,
while “FP” and “FN” indentify false positives or negatives. (b) Time to leak information of different sizes using
various techniques.

(a) Success rates
Technique YUntaintedXTaintedY

′
Untainted

Tainted Variable – X –
File R/W (ovrwr.) – X –
File R/W (app.) – X X (FP)

Simple Encoding – – (FN) –
Count-to-X – – (FN) –
Exception-Error – – (FN) –
Shell Command – – (FN) –
File-Shell Hybrid – – (FN) –
Timekeeper – – (FN) –
File Length – – (FN) –
Clipboard Length – – (FN) –
Bitmap Cache – – (FN) –
Bitmap Pixel – – (FN) –
Text Scaling – – (FN) –
Direct Buf. (Rel.) – – (FN) –
Direct Buf. (Git) – X X (FP)

(b) Timing measurements

Technique
IMEI 5 s audio
(15B) (11.00 kB, σ = 50.8B)

avg. [ms] σ avg. [ms] σ

Tainted Variable 3.48 4.07 364.97 67.31
File R/W 47.62 19.56 386.01 49.85

Simple Encoding 9.55 4.55 795.72 49.12
Count-to-X 10.14 5.41 8278.64 84.20
Exception-Error 53.22 22.09 —
Shell Command 72.22 12.69 —
File-Shell Hybrid 78.10 25.80 —
Timekeeper 1037.66 82.60 —
File Length 72.37 21.78 —
Clipboard Length 84.89 18.61 —
Bitmap Cache 312.27 24.45 —
Bitmap Pixel 35.95 12.35 2899.80 172.56
Text Scaling 12.92 5.91 3022.58 84.12
Direct Buffer 4.00 3.67 2988.70 87.69

reducing the number of false negatives, increases
the number of false positives, where variables that
convey no information about tainted data are
marked. Implicit control dependence attacks (or
implicit flow attacks, as referred to in Clause et
al., 2007; Kang et al., 2011) are more difficult
to detect than explicit attacks, as the untainted
variable is not actively manipulated in the control
path it is relevant to. These can be mitigated by
techniques similar to Perl’s is_tainted() func-
tion, which marks all enclosed variables (perlsec -
Perl security 2012). This, however, requires that
the developer explicitly marks the parts of their
code potentially susceptible to such attacks, and
is also prone to false positives. Without such de-
veloper cooperation, and to the best of our knowl-
edge, there is no mitigation technique for taint
evasion using implicit flows. It should also be
noted that most of the presented control depen-
dence attacks rely on replacing direct assignment
with comparisons between the tainted and un-
tainted variables. Propagating taint on compar-
ison might therefore be an interesting improve-
ment to consider. Finally, although the higher
false positive rate may impact the accuracy of
TaintDroid, which only issues warnings, related
systems that actively block data leaks (such as
AppFence Hornyack et al., 2011 or MOSES Rus-
sello et al., 2012), would see an unacceptable re-
duction of functionality.

Protection against benign code-subversion
attacks is also prone to false positives, however,
implementing this protection may not even be

a viable option. Attacks involving subversion
of system utilities would be effectively blocked
by preventing the applications from using them;
once again, the consequence for many applica-
tions would be that they would not be able to
function as designed. Another option, in the case
of TaintDroid, would be to instrument not only
the Dalvik VM, but the entire system for taint-
tracking, so low level utilities are also watched.
This, however, would require a large develop-
ment effort with a set of additional challenges
yet to be explored (e.g., patching the system li-
braries and/or the kernel itself). Additionally,
as noted in Section 4.3.5, effectively preventing
pointer indirection attacks would require being
able to mark each memory address, which is likely
impractical.

The side channel attacks can be mitigated
by techniques similar to those used against con-
trol dependence attacks, i.e., by tainting a larger
scope of variables, however with similar conse-
quences of increasing the number of false posi-
tives. The evolution of TaintDroid’s code shows
us a nice example of this problem: the Direct
Buffer attack was initially successful, but later
additions to the TaintDroid code rendered it inef-
fective. Yet, the same additions also increased the
rate of false positives when using Direct Buffers.

We note that most of the presented attacks
(save for the specific details of the side channel
attacks) are more generally applicable to dynamic
taint tracking systems at large, rather than only
to Android based systems. On a more generic

note, and as already alluded to by Kang et al.,
2011, a number of issues are inherent to us-
ing taint analysis against the developer and can
therefore not be easily side-stepped. Therefore,
dynamic taint analysis is likely not to be effec-
tive in this context when used alone, as a single
breach in the security is where the malware de-
veloper, aware of such protection, is most likely
to attack.

7 CONCLUSION
We have argued that dynamic taint tracking is

unlikely to be effective in detecting privacy leaks
in malicious applications written with the expec-
tation of such close scrutiny in the context of An-
droid architecture. Indeed, the malware devel-
oper can use easy programmatic constructs in the
code, enabling the removal of taint marks without
losing the information.

We have provided the algorithms for a number
of different attacks, and evaluated their perfor-
mance on the Android platform with the Taint-
Droid patch. Though only a few lines of code
each, they were shown to be sufficient to com-
pletely bypass TaintDroid, and allow silent leak-
ing of sensitive information. While some of the
attacks were targeting self-reported limitations of
TaintDroid, which can be corrected by new ver-
sions, others have highlighted an essential prob-
lem of using taint analysis against the developer
of the code under study.

REFERENCES
Cavallaro, L., P. Saxena, and R. Sekar (Nov.

2007). Anti-Taint-Analysis: Practical Evasion
Techniques Against Information Flow Based Mal-
ware Defense. Tech. rep. Stony Brook University
(cit. on pp. 2, 3).

— (July 2008). “On the Limits of Information
Flow Techniques for Malware Analysis and Con-
tainment Detection of Intrusions and Malware,
and Vulnerability Assessment”. In: DIMVA 2008.
Chap. 8 (cit. on pp. 2, 3, 5).

Chow, J., B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum (Aug. 2004). “Understanding Data
Lifetime via Whole System Simulation”. In: Secu-
rity 2004 (cit. on p. 2).

Clause, J., W. Li, and A. Orso (July 2007). “Dytan: a
Generic Dynamic Taint Analysis Framework”. In:
ISTA 2007 (cit. on pp. 6, 7).

Egele, M., C. Kruegel, E. Kirda, and G. Vigna (Feb.
2011). “PiOS: Detecting Privacy Leaks in iOS Ap-
plications”. In: NDSS 2011 (cit. on p. 1).

Enck, W., P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth (Oct. 2012). “Taint-
Droid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”.
In: OSDI 2010 (cit. on pp. 2–5).

Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wag-
ner (2011). “Android Permissions Demystified”.
In: CCS 2011 (cit. on p. 1).

Felt, A. P., E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner (June 2012). “Android Permissions:
User Attention, Comprehension, and Behavior”.
In: SOUPS 2012 (cit. on p. 1).

Gilbert, P., B. G. Chun, L. P. Cox, and J. Jung (June
2011). “Vision: Automated Security Validation of
Mobile Apps at App Markets”. In: MCS 2011 (cit.
on p. 2).

Google Inc. (Nov. 2012). Android Java New I/O In-
terface. Android 4.2 r1. url: http://developer.
android.com/reference/java/nio/package-
summary.html (cit. on p. 5).

Graa, M., N. Cuppens-Boulahia, F. Cuppens, and
A. Cavalli (Dec. 2012). “Detecting Control Flow
in Smarphones: Combining Static and Dynamic
Analyses”. In: CCS 2012 (cit. on p. 2).

Grace, M. C., W. Zhou, X. Jiang, and A.-R. Sadeghi
(2012). “Unsafe exposure analysis of mobile in-
app advertisements”. In: WiSec 2012 (cit. on
p. 1).

Ho, A., M. Fetterman, C. Clark, A. Warfield, and
S. Hand (2006). “Practical Taint-based Protection
Using Demand Emulation”. In: EuroSys 2006 (cit.
on p. 2).

Hornyack, P., S. Han, J. Jung, S. Schechter, and D.
Wetherall (Oct. 2011). ““These Aren’t the Droids
You’re Looking For:” Retrofitting Android to Pro-
tect Data from Imperious Applications”. In: CCS
2011 (cit. on pp. 1–3, 7).

Kang, M. G., S. McCamant, P. Poosankam, and D.
Ong (Feb. 2011). “DTA++: Dynamic Taint Anal-
ysis with Targeted Control-Flow Propagation”. In:
NDSS 2011 (cit. on pp. 6–8).

Newsome, J. and D. Song (2005). “Dynamic Taint
Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software”. In: NDSS 2005 (cit. on pp. 2, 3).

perlsec - Perl security (May 2012) (cit. on pp. 2, 7).
Russello, G., M. Conti, B. Crispo, and E. Fernan-

des (June 2012). “MOSES: Supporting Operation
Modes on Smartphones”. In: SACMAT 2012 (cit.
on pp. 2, 3, 7).

Schwartz, E. J., T. Avgerinos, and D. Brumley (May
2010). “All You Ever Wanted to Know about Dy-
namic Taint Analysis and Forward Symbolic Exe-
cution (but Might Have Been Afraid to Ask)”. In:
SP 2010 (cit. on pp. 2, 3).

Thomas, D. and A. Hunt (2001). “Locking Ruby in
the Safe”. In: chap. 20 (cit. on p. 2).

Understanding Carrier IQ Technology (Dec. 2011).
White Paper. Carrier IQ (cit. on p. 1).

Yin, H., D. Song, M. Egele, C. Kruegel, and E. Kirda
(2007). “Panorama: Capturing System-wide Infor-
mation Flow for Malware Detection and Analy-
sis”. In: CCS 2007 (cit. on p. 2).

http://developer.android.com/reference/java/nio/package-summary.html
http://developer.android.com/reference/java/nio/package-summary.html
http://developer.android.com/reference/java/nio/package-summary.html

