
Into the Moana1 — Hypergraph-based Network

Layer Indirection

Yan Shvartzshnaider∗†, Maximilian Ott∗, Olivier Mehani∗,

Guillaume Jourjon∗, Thierry Rakotoarivelo∗

∗National ICT Australia (NICTA)

Email: first.last@nicta.com.au

David Levy†

† The University of Sydney, Australia

Email: first.last@sydney.edu.au

Abstract—In this paper, we introduce the Moana network
infrastructure. It draws on well-adopted practices from the
database and software engineering communities to provide
a robust and expressive information-sharing service using
hypergraph-based network indirection.

Our proposal is twofold. First, we argue for the need for
additional layers of indirection used in modern information
systems to bring the network layer abstraction closer to the
developer’s world, allowing for expressiveness and flexibility in
the creation of future services. Second, we present a modular and
extensible design of the network fabric to support incremental
architectural evolution and innovation, as well as its initial
evaluation.

I. INTRODUCTION

While the Internet has inspired innovation and evolution of

new and exciting services, its initial design, the TCP/IP model,

has remained relatively the same. The TCP/IP model provides

a host-driven packet delivery service to the upper application

layer. This contrasts to the majority of today’s services that

are primarily about content dissemination and consumption. It

rapidly becomes less about sending a particular file to someone

and more about where to store and share it. The core Internet

fabric is not designed to deal efficiently with such service

abstraction and therefore often finds itself under strain to meet

the overwhelming demand from content-driven applications.

Motivated by this and other challenges [1] various recent

research projects (PSIRP [2], CCN [3], DONA [4]) have

emerged to tackle these problems by rethinking the network

design fundamentals. These efforts offer a step towards a

paradigm shift in the network service by introducing the notion

of retrieving location-independent named objects, whereby the

network service comes closer to resembling a storage system:

you put labelled content in and you expect to get it out when

you need it. The “fetch content by its label” service is a much

more useful abstraction for most applications developers than

one based on “sending packets from A to B.”

Nevertheless, the rich and heterogeneous nature of today’s

Internet services calls for additional higher layers of data

indirection to allow for the needed expressiveness in the

communication between endpoints and the network. The net-

working community can “benefit from adopting the database

1Pronounced “moh-ah-nah,” meaning “ocean” in Hawaiian.

community’s perspective on reusable infrastructures for data

independence” [5]. Data independence is a data-management

method that allows for innovation at each of the levels of the

system, without affecting other levels, by abstracting the way

data is stored and retrieved.

The network efforts so far [6], [7] have focused on a single

level of indirection that abstracts the notion of routing named

content. Such a simple level of indirection is not sufficient

for a network service that loosely couples a large number of

information-driven applications with varied data formats and

communication protocols.

In this paper, we propose Moana, a general-purpose

hypergraph-based network indirection that merges various

concepts from the network and database fields to realise

a distributed and decentralised information network. Moana

leverages the principle of data independence to introduce

support for a (hyper)graph abstraction at the network layer.

The graph abstraction maps well to modern practices in de-

signing applications such as the use of the Unified Modelling

Language (UML) or Entity-Relationship (E-R) diagrams, and

also resonates with newly emerging trends in data-centric

application development (e.g., the semantic web’s Linked Data

initiative [8] and information-rich applications [9]). Moana

thus allows for a more natural and richer communication

between the network and applications using it, while making

a clean-slate modular and extensible network fabric possible.

The remainder of the paper is organised as follows. We start

with an overview of recent related work to see how Moana

fits in. Section III discusses Moana’s service model, data in-

dependence approach and network fabric. The implementation

of Moana’s service primitives is detailed in Section IV. The

main concepts behind the Moana proposal are summarised in

Section V. We evaluate the benefits of using Moana over CCN

in Section VI and conclude the paper with a look at future

work in Section VII.

II. RELATED WORK

Moana’s design draws on well-adopted practices from the

database and software engineering communities to provide

a robust and expressive network abstraction as well as an

evolutionary design of the network fabric. In this section we

summarise the highlights of the related work in that space.

Service indirection. The fundamental gap between the net-

work service abstraction and that used by top level appli-

cations, which are primarily about content, has inspired the

discussion on content-centric networks. Although many of

the proposals [2], [3], [4] have different technical implemen-

tations, they all argue for a common set of design goals

for Information Centric Networking1 (ICN) [7]: 1) Introduce

a persistent content naming scheme. 2) Do away with a

host-driven architecture and let the network route named-

content instead. 3) Shift to a publish/subscribe communication

paradigm. 4) Leverage in-network storage for content caching.

More recently, however, questions have been raised on the

ability of such an architecture to evolve and foster future

innovation of new applications and services. Some cite the

lack of expressiveness in communication between the end-

host applications and the network as one of the main factors,

as it is not trivial for individual applications to express their

intent to the network service [10]. Others note the scarcity

of architectural modularity, indirection and extensibility in the

design to cater for future incremental changes [11], [12].

Service expressiveness. The eXpressive Internet Architecture

(XIA) [10] addresses the “expressiveness problem” through

the introduction of principal types and fallbacks for different

communication styles between the network and the end-host

applications. Principals are a way for an end-host application

to communicate the type of service they require from the

network, while fallbacks specify alternative services should

the requested one not be available.

While motivated by the same subset of problems, the Moana

approach is different in that it focuses on defining a generic

way to encode and exchange information between the service

and the network rather than standardising a particular service

API. XIA’s principal types and fallback mechanisms constitute

information, and can therefore be transposed into an ontology

on top of the graph of the “Moana world.”

Network modularity. Modularity and support for extensibility

in architectural design is a well-known practice in software

engineering. A modular system comprises a set of individual

components that are loosely coupled to execute a task. In a

large and composite design, modularity makes for a robust and

manageable system [13]. These characteristics are particularly

vital to support incremental evolution of any system.

Ghodsi et al., propose a new design for Ongoing and

Pervasive Architectural Evolution (OPAE) in [11], based on

additional indirection for flexibility and modularity to limit

the scope of the change and extensibility to facilitate new

functionality.

The Moana architecture follows the same design principles

as OPAE. However while our design goals and principles

overlap, the Moana architecture provides different mechanisms

to facilitate indirection and modularity. In Moana all the

components are loosely coupled through an abstract notion

1This is in fact content-centric networking. As noted by [7], “information
is an abstraction on the next higher level. In order for data to become
information, it must be interpreted and must take on a meaning.”

of a port. The basic functionality of a port is to receive and

send out content fragments and tuples. We discuss these in

detail in the next section.

Data Independence. Classical database systems are designed

to provide three layers of data abstraction [14]. First, and the

lowest, is the physical layer that defines how to store data.

Next, comes the logical layer that describes the data and its

relationships to other data. The third and highest is the view

layer which is used to show parts of the entire system.

In [5], Hellerstein makes a case for leveraging data inde-

pendence and its importance in designing systems that are

robust to changes. He examines various large-scale content

distribution networks through the “database lens” and finds

that they have more in common than might appear at a first

glance. Hellerstein calls upon the networking community to

draw on some of the practices used by the database community

when designing large-scale network applications.

Moana takes up the concept of data independence in its

design to decouple the service logic from the underlying

content delivery network. We describe the role and properties

of each level of indirection later on.

III. MOANA DESIGN & ARCHITECTURE

We first describe the basic service model behind Moana.

We then go into more detail on Moana’s design, first covering

the data abstraction and then focussing on the architectural

realisation.

A. Service Model

As mentioned in the introduction, the majority of popular

Internet services such as Google, YouTube and various social

networking sites are about information dissemination. A graph

abstraction plays a key role in these services that use graphs

to capture the underlying relationships. Currently each service

or application maintains its own graph with custom APIs. In

fact, the Internet is full of diverse well-guarded graphs with

partially replicated information.

Reminiscent of the pre-Internet era,2 there are now calls

for a more generic approach to provide a generic graph

infrastructure that interconnects and leverages by these “infor-

mation graphs” which are currently partially replicated across

many applications [15], [16], [17]. We therefore propose a

service model to bring these graphs into a single information

network—the kind envisioned by Tim Berners Lee [15]—on

top of which additional services that interact and manipulate

this information space can be built.

Moana is an information dissemination network layer based

on a hypergraph abstraction. This service model is designed

to support applications in publishing to and requesting in-

formation from the network. It departs from the traditional

model of defining network protocols for particular services,

and proposes a generic mechanism to request and share

information between any applications using the network. A

2Internet stands for INTERconnected NETworks and was designed to bridge
a variety of different data networks.

publication makes the content available in the network with

a description of meta-data as a set of n-tuples. Conversely, a

request is transformed into a standing graph query on desired

content attributes and results in the delivery of the content to

the application.

B. Data Independence

The support for data independence in a system limits the

impact of changes at each level. While developers can offer

different functionalities at higher levels of data abstraction, the

services operating at the lowest layer remain unchanged [14].

Moana realises these layers as follows.

The View Layer. The view abstraction provides applications

with a uniform functionality to view, access and add new

data. It defines the language primitives used by applications

to interact with the network using the Publish/Subscribe API.

The Logical layer. In the Moana design the logical layer

employs a directed hypergraph abstraction to describe entities

and their relationships to other entities. A hypergraph is

defined by a set of n-tuples [18] (we refer to them as tuples

for remainder of the paper). In Moana, tuples contain six

elements:

< subject:GUID, predicate:GUID,

object:Any, context:GUID,

publisher:GUID, createAt:timestamp >

Nodes in the hypergraph representing entities, as well as the

edges are identified by a Global Unique Identifier (GUID).

Entity attributes hold their respective values; the types of these

values are restricted to standard types like string, numeric or

blob for images or videos. Due to their arbitrary size and

the different ways with which content is often produced and

consumed, blobs are labelled with a GUID and split into a

sequence of content fragments (CF). The context element

can be used to capture additional provenance details.

The Physical layer. Moana’s physical data layer serialises

tuples into blocks suitable for transmission on the transport

substrate. To transfer content blobs (i.e., CFs) it borrows the

ICN’s physical data model for storage and retrieval of named-

chunks.

C. Network Fabric

Having described the three layers of the data abstraction

supported by Moana we move on to give an overview of the

proposed network fabric that supports their existence.

The Moana network supports two main functionality primi-

tives: 1) hop-by-hop forwarding, and 2) reasoning over tuples.

It comprises a physical layer of forwarding engines linked

through ports to applications, routing engines, fragment stores

and channels, as shown in Figure 1.

Forwarding Engine (FE). The main task of the FE is to

forward tuples and CFs by consulting the forwarding table,

Fragment
Store

Application

Routing
Engine

Forwarding
Engine

Tuple Store

Tuple

Port

Channel

FE
P

FE
P

Port

Content
Fragments

Port

Port

Forwarding
Table

Fig. 1. The Moana network fabric

POLICY Flood

FORWARD [FE1guid,FE2guid,...]

WHERE

?content typeguid TypeAguid

?content publishedByguid ServiceBguid

Listing 1. Simple policy instructing the FE to forward any content published
by a particular application

which maps GUIDs to Forwarding Engine Instructions (FEI).

An FEI contains the port interface on which to forward,

plus additional information such as the designated neighbours’

GUIDs, in case the FE is connected to a larger network.

Routing Engine (RE). The RE keeps the state of the policies

that the FE follows. The policies are defined by graph queries

on the tuple store attached to the RE, with a corresponding

action, similar to that illustrated in Listing 1, where the

notation elementguid denotes the GUID for that element. The

implementation for the tuple store may vary.

• Local tuple store. The local tuple store contains only a

partial view of the information space. For example, an

RE can store every tuple that it receives.

• Centralised Tuple store. A centralised tuple store acts

as a global information space. The RE passes the query

to a globally known tuple store. The local tuple stores at

each FE may then act as caches.

• Distributed tuple store. A global information space

consists of the distributed local tuple stores at each RE.

This effectively allows the RE to query locally to access

global content.

One way to implement this is to adapt the Rete al-

gorithm [19], an efficient pattern matching algorithm

frequently used in production rule systems, onto a dis-

tributed storage environment [20].

Content Fragment Store (CFS). The CFS is attached to

an FE to allow caching of content fragments. The CFS also

provides an API that an RE can use to trigger the forwarding

of particular content fragments.

Port. Ports provide an abstract interface used by all the

network components to interconnect. FEs do not distinguish

between forwarding an incoming CF to an outgoing (network)

port, a storage port, or a routing engine for that matter. What

to store and where to forward is left to the RE and is achieved

by manipulating the FE’s Forwarding Table (FT).

Channel. Channels allow FEs attached to them to exchange

messages. The most basic channel provides a simple broadcast

mechanism, while most practical channels will also provide

unicast with optional multicast capabilities. Channels also

provide a mechanism for all attached elements to eventually

discover other attached entities. Additional mechanisms may

exist for elements to learn about channel properties and be

notified of changes to these properties, e.g., the quality and

availability of a wireless channel.

IV. MOANA SERVICE PRIMITIVES

The service provides two main service primitives: Publish

and Request. We refer to any content produced by an appli-

cation as a content unit (CU), an abstract concept understood

only at the view layer.

Publication. A publication starts with an application connect-

ing to an FE through a port and publishing a CU with a set

of tuples describing it. The lower layers break the CU’s blob

down into a set of CFs. They are stored in the local CFS.

The meta-data tuples are forwarded through a local port to

the RE for processing. The RE can reason over these to take

an action governed by the policy. For example, a policy can

instruct the RE to populate the FE’s forwarding table with

FEIs that forward any CF related to a particular CU to the

immediate neighbours, or forward any arriving tuples to its

attached tuple store.

Request. A request consists of the following five phases: 1) An

application connects to an FE through a port. 2) The service

sends through a request as a graph query. 3) The graph query is

decomposed into a set of tuples bound by the binding variables

on the way to the FE. 4) The FE passes the tuples to an RE

attached to it. 5) The RE maintains the state of the query,

while fetching tuples matching the query from its attached

tuple store.

Returning and processing results. Query-matching tuples

returned by the RE identify relevant CFs by their GUID,

as well as any additional information on how to reach the

FEs containing the CFs. We assume that FEs can obtain CFs

once their GUIDs are known. This is not an unreasonable

assumption, as the majority of ICN architectures are designed

for that. The application-hosting FE receives the CFs and

forwards them to the application.

The additional returned information depends on the un-

derlying content delivery service. For an HTTP-like protocol

it can be a URL, for CCN [3], a hierarchical name that is

used for routing it. Also, since each FE is able to reason

over tuples (with help of their respective REs), the additional

information can serve as a “hint” as to what direction to route

the “fetching” request to, in case a direct path wasn’t specified.

For example, an FE can use the CU context (specified as part

of a tuple) rather than directly using the GUID of the CU to

route it. In case there is more than one possible route, the meta-

data tuples might include alternative routes, similarly to Slick

Packets [21]. However with Moana these routes can include a

possible combination of networks.

V. PUTTING IT ALL TOGETHER

So far we have described the main concepts behind the

Moana design and architecture. We now discuss their roles

with a conceptual example that illustrates how everything

comes together.

A. Main actors

The Moana service model abstraction facilitates building

large network applications in a more abstract way. We choose

to describe a “content sharing” functionality from a view

of various stakeholders: end-user, application developer, and

service provider.

End-user. Moana’s design does not directly target the end-

user. It deals with the interaction between the application and

the network. The end-users will use the application through

an interface familiar to them.

Application developer. Every application is driven by their

application logic. To build an app to share content, a developer

needs to design an information model that captures this logic.

For the purpose of our example, we present two of the simplest

models:

model User {

id: GUID
name: String
friends: Set<User>
}

model Content {

id: GUID
type: GUID
publishedBy: User
tags: Set<GUID>
relatedTo: Set<GUID>
}

The above models are self-explanatory and represents a very

simplified social network interaction. The User can post Con-

tent, and be linked to other Users. These models can be defined

using any of the modern programming languages, however we

expect a more native solution, similar to Jenabean [22] for the

Semantic Web that automatically binds Java types to the RDF3

graph to be developed for such a hypergraph-based network

service. The functionality of the application will be done by

using the service primitives: Publish and Request.

Service provider. From a service provider’s point of view,

having intrinsic support for graphs within the network means

that the application has more control on how the content is

propagated through the network. Among other benefits, the

3Resource Description Framework

REQUEST ?content

WHERE

?content typeguid Movieguid

?content publishedByguid FriendAguid

?content tagsguid [Tag1guid, Tag2guid,...]

Listing 2. Request graph query for a content of type “Movie” that was
published by a Friend and matches a specific set of tags

content service provider can take full advantage of the small-

world phenomena often found in social driven networks [23].

In YouTube, for example, the content is more likely to be

fetched next if it has a relation to the currently watched

video [24]. This can lead to more efficient policies for storage

and caching; more so, much of it can be done on the fly

in an automatic fashion as a result of reasoning over tuples

accompanying the content. The service provider might have

different policies to ensure a more effective, secure, or even

possibly “greener” content delivery.

B. Illustrative example

Once the model has been implemented, the developer can

build more complex functionality around it, while presenting

the user with a friendly interface.

On the application side, for instance, the “Wall” feature

that lists recently posted content is common in social-driven

content sharing services. This feature comprises many requests

to the network for different types of content. A lot of them

will rely on the functionalities such as “PostContent (content:

Content)” and “FetchUserContent(user id: GUID),” where the

developer will use the primitives described in Section IV,

namely, the Publish and Request methods.

The actual content (e.g., image or video), is split into a set of

CFs. The meta-data describing it is encoded into a collection

of tuples. The CFs and tuples are passed to the CFS and RE,

respectively. The tuples can remain stored in a local tuple store

or be further disseminated based on the RE policy, enacted by

FEIs.

For the request, a standing graph query, similar to Listing 2

is injected into the network. As mentioned in Section IV, the

query is decomposed into a set of tuples. The FE forwards the

tuples to the RE that, in turn, queries the tuple store attached

to it. As a standing query, the request will be monitored

by the RE for any CFs or tuples matching it. The request

facilitation depends on the implementation of the attached

tuple store—local, centralised or distributed—and the policies

for the request dissemination set by the network administrator.

Once there is a match, the RE will instruct that the CFs and

tuples be forwarded to the application through a relevant port.

This will trigger callback functions such as “display it on the

Wall”.

The functionality described above is very simple, but serves

to illustrate the ease with which the logic of an application is

mapped into a network service that understands hypergraphs.

VI. EVALUATION

We now evaluate Moana’s dissemination policy. We would

like to test the hypothesis that the Moana network service

brings a reduction in the effort required to fetch content.

We choose to conduct our measurement campaign on top

of ccnSim [25], a chunk-level CCN simulator based on OM-

NeT++ [26]. In this framework, we have implemented two

additional modules application and moana wrapped in

a compound node module together with ccn_node. The

application modules operate using the Moana API. They

can publish and request information, while the moana module

in turn uses CCN to deliver the content.

Scenario. We simulate a simple social network scenario where

a user is followed by a number of friends who are interested

in receiving notifications on any content published by the user.

We also assume that the path to all the friends is known.

Experiment. We use a network based on a one hundred

strongly-connected grid-nodes topology (while not quite re-

alistic, this still allows us to conduct various performance

and scale comparisons; more realistic topologies are kept

for future work). The CCN network was configured to use

a Least Recently Used (LRU) cache replacement policy. At

every simulation run, we elect a node P in the network to

act as a publisher. This specific node will create and publish

a content C as well as its meta-data containing: content ID,

size and other attributes. Meta-data is then disseminated to

the publishers’ friends. On receiving meta-data, every friend

requests P for the content C. In the remainder of this section,

let F be nodes that are friends with P and f ∈ F be a friend

node of the publisher P .

We run two modes for content retrieval, CCN-only and

Moana/CCN. In the CCN-only mode, friend-nodes request

content using its ID while in the Moana/CCN mode friend-

nodes take advantage of the social graph with the Moana

service layer to request content from other friends of P . We

can note that, as mentioned throughout this article, with Moana

the requesting node does not need to know the exact content

ID, and can base its requests solely on the attributes of the

content C such as publisher, type or context.

We conducted a series of simulations over the same topol-

ogy with the same publisher node P . We randomised the

content size as well as the selection of subset F. Once these

parameters are selected we run the simulation once for each

mode. We also selected the friend group size as another

independent variable of our experimentation and chose two

levels of 5 and 10 friends.

Metric: We use the downloading effort from [25] as our

metric. The downloading effort is denoted as:

ηC =

∑size(C)
i=1 di

|D| size(C)
, C = {c1, c2,cn}

where size(C) denotes the size of the content C in chunks,

di is the distance travelled by chunk ci in terms of hops and

|D| is the shortest distance to the publisher. ηC ranges from

CCN, 5 CCN, 10 Moana/CCN, 5 Moana/CCN, 10

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Factors: Mode, Number of Friends

D
o
w

n
lo

a
d
 e

ff
o
rt

Fig. 2. Simulation results: Moana/CCN reduces the effort it takes for content
to reach interested parties as compared to CCN alone.

0—no effort—to a maximum of 1—the effort it takes to get

the entire content from the original publisher.

Results. Figure 2, shows box plots of effort results from

100 runs for the CCN and Moana/CCN modes with different

friend set F sizes, first with 5 and then 10. It suggests the

Moana/CCN mode has a significant impact in reducing the

effort it takes to get a chunk. Moreover, increasing the number

of friends in the set appears to further reduce the overall effort

for the chunks in both modes.

To further confirm that the null hypothesis that there is no

difference between the populations of means under different

treatments of the mode and number of friends factors can be

rejected, we performed ANOVA tests with significance level

α = 0.05 (for a 95% confidence level when rejecting the

null). We found that the null hypothesis could be rejected for

both factors (p < 0.05), and that their interaction was not

significant (p > 0.05). Changing the mode and the number

of friends does have a significant effect on the average effort.

Tukey HSD tests identified a reduction in the effort mean of

approximately 13% (1.28× 10−1) when using Moana.

It is worth noting that we had to use a non-parametric

multivariate version of the ANOVA test as some of our result

data sets did not match the normality assumption. In our

experiment, when using CCN with only 5 friends, the effort

was skewed towards 1, which we hypothetise is due to the

limited number of friends in this scenario not allowing the

capabilities of the mechanism to be exploited fully. This did

not appear with CCN/Moana and the same number of friends.

We plan to investigate this in detail in future work.

VII. FINAL REMARKS

In this paper we have described Moana, a new a hypergraph-

based network service abstraction. It is a step closer to the de-

velopers’ world, and allows for easier application development

and deployment by hiding the particulars of the underlying

content delivery infrastructure. Furthermore, the support for

tuples opens new avenues in policy-based routing and network

management. It can help the network core exchange and reason

over information at the lowest levels using high level terms.

In our future work, we plan to examine more information dis-

semination policies, use more realistic topologies and evaluate

the performance with other transport protocols in addition to

CCN.

REFERENCES

[1] M. Conti, S. Chong et al., “Research challenges towards the Future
Internet,” Computer Communications, vol. 34, no. 18, 2011.

[2] D. Lagutin, K. Visala, and S. Tarkoma, “Publish/subscribe for internet:
Psirp perspective,” Towards the Future Internet Emerging Trends from

European Research, vol. 4, pp. 75–84, 2010.
[3] V. Jacobson, D. Smetters et al., “Networking named content,” in

Proc. of the 5th Inter. Conf. on Emerging networking experiments and

technologies. ACM, 2009, pp. 1–12.
[4] T. Koponen, M. Chawla et al., “A data-oriented (and beyond) network

architecture,” in ACM SIGCOMM CCR, vol. 37, no. 4. ACM, 2007.
[5] J. Hellerstein, “Toward network data independence,” SIGMOD Rec,

vol. 32, pp. 200–3, 2004.
[6] I. Stoica et al., “Internet indirection infrastructure,” in ACM SIGCOMM

CCR, vol. 32, no. 4. ACM, 2002, pp. 73–86.
[7] B. Ahlgren, C. Dannewitz et al., “A Survey of Information-Centric

Networking (Draft),” http://drops.dagstuhl.de/opus/volltexte/2011/2941,
Feb. 2011.

[8] “ Linked Data - Connect Distributed Data across the Web ,” http://
linkeddata.org/.

[9] “What’s New for Visual F-Sharp in Visual Studio 2012 RC,” http://
msdn.microsoft.com/en-us/library/hh370982%28v=vs.110%29.

[10] A. Anand, F. Dogar et al., “XIA: an architecture for an evolvable and
trustworthy internet,” in Proc. of the 10th ACM HotNets Workshop.
ACM, 2011, p. 2.

[11] A. Ghodsi, S. Shenker et al., “Intelligent design enables architectural
evolution,” in Proc. of the 10th ACM HotNets Workshop. ACM, 2011.

[12] T. Koponen, S. Shenker et al., “Architecting for innovation,” ACM

SIGCOMM CCR, vol. 41, no. 3, pp. 24–36, 2011.
[13] G. Myers, Composite/Structured Design. 1978. New York, NY: Van

Nostrand Reinhold.
[14] S. Kedar, Database Management Systems. Technical Publications, 2007.
[15] T. Berners-Lee, “Giant global graph - decentralized information group

(DIG) blog post,” http://dig.csail.mit.edu/breadcrumbs/node/215, Nov.
2007.

[16] B. Fitzpatrick, “Thoughts on the Social Graph,” http://bradfitz.com/
social-graph-problem/, Aug. 2007.

[17] A. Iskold, “Social Graph: Concepts and Issues,” http://www.
readwriteweb.com/archives/social graph concepts and issues.php,
2007.

[18] J. Sowa, Conceptual structures: information processing in mind and

machine. Addison-Wesley Pub., Reading, MA, 1983.
[19] C. Forgy, “Rete: A fast algorithm for the many patterns/many objects

match problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–37, 1982.
[20] Y. Shvartzshnaider, M. Ott, and D. Levy, “Publish/subscribe on top of

DHT using RETE algorithm,” Future Internet-FIS 2010, 2010.
[21] G. Nguyen, R. Agarwal et al., “Slick packets,” ACM SIGMETRICS

Performance Evaluation Review, vol. 39, no. 1, pp. 205–216, 2011.
[22] “Jenabean project home,” https://code.google.com/p/jenabean/.
[23] A. Mislove, M. Marcon, K. Gummadi et al., “Measurement and analysis

of online social networks,” in Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement. ACM, 2007, pp. 29–42.
[24] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube

videos,” in Quality of Service, 2008. IWQoS 2008. 16th inter. Workshop

on. Ieee, 2008, pp. 229–238.
[25] D. Rossini and D. Rossi, “A dive into the caching performance of content

centric networking,” Technical report, Telecom ParisTech, Tech. Rep.,
2011.

[26] A. Varga et al., “The OMNeT++ discrete event simulation system,” in
Proceedings of the European Simulation Multiconference (ESM2001),
vol. 9. sn, 2001.

