Time Calibration in Experiments
with Networked Sensors

Olivier Mehani, Ronnie Taib, Benjamin Itzstein

National ICT Australia
Eveleigh, Sydney, NSW, Australia
Email: {name.surname}@nicta.com.au

Abstract—Physiological sensors are widely used in user studies,
often by practitioners with limited expertise in networking.
However, large data volumes, and processing times often prevent
the use of a single computer to collect the readings in real time.
With multiple collection machines appear the problems of data
aggregation and, more importantly, synchronisation. This paper
describes how the OML reporting library allows solving the
aggregation problem at low cost by introducing a lightweight
instrumentation reporting to a centralised database. However,
with unknown delays in network paths during aggregation and
unreliable clocks on acquisition machines, synchronisation is hard
to attain. We present a preliminary study of the theoretical
feasibility of post hoc synchronisation corrections, supported
by an experiment applying correction techniques to artificially
impaired clocks and network transmissions. Based on the results
of this experiment this paper highlights potential improvements.

Index Terms—networked sensors, measurement, synchronisa-
tion, OML, TTP

I. INTRODUCTION

Once confined to medical and psychological studies,
physiological sensors are now widely used in studies ranging
from theoretical human-computer interaction understanding
to market research. This is due in part to the advancement
of cognitive processes and their connection to physiological
reactions, but also to the availability of affordable and easy-
to-use sensors. It is common to find heart rate, temperature,
galvanic skin response (GSR), electroencephalography (EEG),
or eye tracking glasses (ETG) sensors used as base or control
measures in many studies.

However, this trend comes with a side-effect of researchers
finding difficulty to manage the data produced by the sensors.
In particular, the following issues arise:

o Acquisition rates can be high, leading to large volumes

of data to store;

o Sampling rates vary according to different time scales,

leading to unaligned records;

« Sensors may be connected to different machines, leading

to synchronisation issues;

e There is little support for cross-sensor synchronisation

when using cheaper equipment.

A. Requirements

The overarching goal is to define a research framework
for storing and synchronising physiological data acquired on
a variety of equipment and machines. The main objective

is to provide a good trade-off between cost, ease of use
(practitioners are often not networking experts), and practical
benefits to the researchers analysing the data. The requirements
are to:

¢ Store high volumes of sensor data in a central location
for easy analysis and combination;

« Be scalable to allow more sensors or acquisition machines
to be added at any time;

o Be low cost and deployable on most current computers
by non-experts.

o Provide synchronisation mechanisms, allowing for cor-
rection of clock discrepancies or network latencies
between acquisition machines.

The latter point is crucial for the usability of the collected
data, and has been extensively studied in distributed wireless
sensor networks [1].

B. Network Reporting

The centralised data storage and scalability requirements
inherently impose networking to be used for passing data
from sensors or acquisition machines, to a central location.
Several technologies address that specific issue with emphasis
on different aspects.

The MQ Telemetry Transport (MQTT) open source pro-
tocol defines a lightweight broker-based publish/subscribe
messaging protocol designed to be open, simple, lightweight
and easy to implement [2], [3]. It is a data centric protocol
allowing machines to exchange data, offering features like
queuing messages when a registered subscriber is off-line,
selectable levels of quality of service such as delivery and
non-duplication guarantee. Part of the protocol is specifically
designed for sensor networks, especially wireless networks.

While lightweight in principle, and offering programming
interfaces for a multitude of languages, the protocol comes
with many business-oriented features which may not be
relevant or easy to deploy for user study experimenters.
Furthermore, it focuses on message passing which means
that additional technology (e.g., IBM WebSphere) has to be
integrated to store and format messages. Most importantly,
while the quality of service can be tuned to regulate message
order for example, the protocol does not seem to include any
timestamping or specific support to synchronise messages at
a fine level.

Figure 1. Participant wearing sensors.

Another option is the use of the OML framework [4]. While
initially introduced for network experiments in testbeds, it can
be used as a reporting system for any sort of set-up requiring
moving sampled data from decentralised sensing devices to
centralised storage databases. It offers automatic timestamping
facilities. Moreover, its underlying data-transfer protocol has
been implemented for multiple programming languages (e.g.,
C, C#, Python), allowing for an easy integration with a wide
range of sensors regardless of their software development kit
of choice. The OML framework consists of a client library
through which instrumented applications report sensor read-
ings, and a data collection server which automatically stores
them in a database for later analysis.

As practitioners, we found OML to be a promising solution.
The server installation was easy and involved few dependen-
cies. In this paper we illustrate a typical context of use: a
user study involving a range of physiological sensors deployed
on several machines. This paper also presents the results
of a preliminary experiment highlighting the benefits of this
approach for post hoc clock and network delay correction.

II. CONTEXT OF USE
A. User Study Set-up

The data storage and synchronisation framework targets user
studies where several physiological or behavioural sensors
are in use simultaneously to monitor a participant under
different conditions. To ground this paper in practice, we
deployed OML for a study focusing on drivers’ behaviour,
conducted within a driving simulator (Figure 1). This specific
example was selected as it includes a variety of sensors
requiring distinct acquisition devices, and hence should reflect
the constraints researchers may face in a wide range of user
studies, whether carried out in the lab or in situ.

The study focuses on the physiological and behavioural
reactions of drivers subjected to increasingly complex tasks
while driving [5]. The various data streams need to be finely
synchronised to allow multimodal analysis.

B. Sensors

The sensors used in the experiment were relatively low cost,
and easy to use sensors. As can be seen in Table I, the sensors
all had different sampling rates and numbers of channels. In
fact, the sampling rates per channel varied, e.g., blink detection

Client 1®
Client 2®

Network delay 1

oML
Server

=

Network delay 2

Network delay n

Client n®

Figure 2. Typical user study set-up.

being slower than gaze direction changes. Moreover, some
of the signals required heavy software processing (EEG and
ETG in particular), so the data acquisition needed to be spread
across several machines.

A more dramatic issue yet was linked to inconsistent
acquisition methods (polling vs. event based), programming
interfaces, and data formats reported by the devices. Most
devices introduced internal sub-sampling, buffering and other
mechanisms that may obscure the true time of each data
point. Some devices provided timestamping, based on the local
computer, other based on their internal clock, and others did
not provide any timestamping at all. These issues were mostly
addressed through the careful design of acquisition programs,
able to unpack buffered data and re-timestamp it using the
local machine time.

C. Aggregation

Once done, we assumed that all incoming signals were syn-
chronised and timestamped according to their local machine
clock. The next step was to ensure overall synchronisation
across acquisition machines, and centralised storage. This is
where the OML framework became crucial.

As illustrated in Figure 2, individual OML clients were
attached to each device but shared the same experiment
identifier within OML. Since OML covers data transmission
and storage, as soon as the clients were started, each data
reading was streamed to the OML server, and stored in a
PostgreSQL database. This automatically provided us with
centralised consistent access to all data streams.

In the following section, we examine timestamping mech-
anisms that can be used post hoc to detect and correct clock
discrepancies between machines, as well as network delays.

III. TIMESTAMP CORRECTION

A. Principles

While the Network Time Protocol (NTP) can in theory
be used to keep all acquisition machines synchronised, its
deployment may not always be possible or desirable. One of
the issues encountered is where a machine’s clock receives
a step update. It is also not the best solution for small or
embedded measurements devices, as discussed in [1].

More specifically for experiments requiring fine synchron-
isation between input signals, absolute time is not paramount.
Instead, strict order between clocks, and duration between
events are of essence [6]. In the following sections, we explore

Table T
SENSORS USED IN THE EXPERIMENT, AND THEIR SAMPLE-ACCESS CHARACTERISTICS.

Sensor Sampling rate Data streams Device

Eye tracking glasses 30Hz 3 channels: gaze direction, pupil dilation, blinks SMI ETG

EEG 128 Hz 14 channels Emotiv Epoc
GSR and BVP 512Hz 2 channels: skin conductance and blood volume pulse ~ Procomp Infiniti
Posture 500 Hz 16 channels: pressure, distance 2 x Phidget 8/8/8
Simulator events 50Hz 10+ channels C# interface
Annotations (by experimenter) 125Hz 1 channel: key logging Keyboard

how to leverage OML timestamping mechanisms to approach
these requirements.

B. Notations

For each reported sample, OML offers two timestamps,
from different vantage points: the client and the server. The
former is added by the measuring client at the time of
recording of the sample. The timestamp accuracy is therefore
only dependent on the local clock of that client. The latter is
added upon reception of the sample by the server. Its accuracy
is impacted by both the server’s clock, and the network delay
from the client. We formalise these relations here.

The real time of occurrence of an event e is t.. This event
can be observed by a node n (server or client). Each node n
has a clock skew rate dA,,(¢)/d¢, and a current drift from the
real time of A, (t). When node n measures the time at which
e occurs, it reads

Cn(te) = te + An(te)~ (1)

When reporting an event e through OML, a client
timestamps the sample with ¢, (t.), then sends it to the server
s. It is received at time t0» = t. + A, s(te), where A, (t.)
is the transmission delay between n and s, composed of the
network and queuing delays on both sides. The server stores
that reception time as an additional timestamp based on its
own clock

cs(ten) =t + As(te)
=te+ Ans(te) + Bste + Ans(te)). ()

By introducing a sequence of synchronisation events i =
1,...,n, simultaneously recorded by various nodes or sensors,
we can study the error between timestamps for different cli-
ents. In particular, the client-to-client timestamp comparison,

Cnyny (1) = cny (ti) — cny () 3

allows evaluating the synchronisation, or lack thereof, of
clocks at nodes n; and no at time t;. The client-to-client
reception time comparison,

Sni,na (i) = cs (t:nl) —Cs (t;nz)) 4

allows quantifying the impact of network delays from each
client to the collection server.

Client 1®

bual Client 2@

output
keyboard

Network delay 1
Network delay 2

OML
Server

B

Figure 3. Experimental set-up: two clients observe the same (mechanical)
keyboard event, and report it to the collection server. Depending on the
test case, different impairments are introduced in the form of clock drifts
or network delays (either static or incremental).

C. Experiment

An experimental set-up involving an OML server and two
clients, each connected via a test router, was deployed to assess
correction when one of the nodes (hereafter denoted impaired)
experiences the following adverse conditions (see Figure 3).

base no clock drift, normal network delay
clockoffset static clock drift of -1s

clockoffset_incstatic clock skew -0.5ms/s, using the
adjtime Unix function with a target cor-
rection of 1s

a one-way delay of 1s is added at an inter-
mediate router using netem, resulting in an
average 2 s round-trip time (RTT, %1 s). This
is an extremely adverse condition, e.g., com-
pared to typical latency maxima of 470ms
for international transmissions

the one-way delay was manipulated to in-
crease by a 250 ms step every 100s

netdelay

netdelay_inc

Two additional scenarios, labelled all (and all_inc) combined
impairments: netdelay on one client, clockoffset on the other
client (and their incremental flavours, respectively). In all
cases, each client uses the ping utility to estimate the RTT
to the server, d;, which they also report through OML.

For each condition, a 5-minute test was run with a mechan-
ically modified keyboard sending simultaneous signals to both
clients. Every 100s, the 26 alphabetical keys are pressed in
sequence, providing a set of exact time references for both
clients, since the signals are mechanically synchronised. The
OML timestamps are recorded for both clients, ¢, (i), and
the server, cs(4), and their analysis provides the basis of the
synchronisation correction.

D. Time Correction

A time-transmission protocol (TTP) has been proposed
in [7]. TTP allows a node to communicate its current clock

4 - -
3 o [T
3 o Client
| A Server
+ Estimated

Error between timestamps
for the same event [s]

W @ VBP0

o HhHeE pasasese
A peo o
T T

o = N
1 1 1
T OB b PP De |

T T T T T
0 50100 200 300

Tea(0)

Figure 4. Error in timestamp for the same event as observed from different
sources (client (3), server (4) and estimated) for the all scenario.

reading to a remote node. Network delays are accounted for by
periodically measuring the RTT. TTP is used in [7] to derive
a feedback probabilistic clock synchronisation algorithm. We
use TTP differently in this proposal. We use a feed-forward
approach, as suggested in [6], to derive estimated timestamps:

. i 1 i) 1 i . 1 i
T2 = esi) = = Yo eali) + 5 D eali) + 5D d;)
Jj=1 j=1 j=1

After deriving the corrected 7.5 for the events in each
of our test cases, we compare the differences between the
timestamps of the same event as observed from two different
sources. Ideally, the difference should be null. Figure 4 shows
these differences, for the scenario with both static drift and
network delay added; for each key event, it compares client
timestamps (3), server timestamps, and estimated timestamps.
In this case, the TTP algorithm successfully absorbs some of
the error in synchronisation, and performs better than either
using plain client (2—4s) or server (1-3s) timestamps. The
remaining error is however still not negligible, of the order of
a second.

Figure 5 shows a summary of the errors for all test cases.
In all cases, TTP allows mitigating the largest error, and
performs better than the impaired timestamp (c,,(¢) in clock-
offset experiments, c4(i) in netdelay experiments). However,
the non-impaired timestamp, if known, still provides better
event synchronicity. TPP is still useful, in case the magnitude
and occurrence of impairments is not known, as it provides a
reduction in errors.

IV. CONCLUSION

Motivated by the need for multi-client sensing in physiolo-
gical studies and simplicity of deployment, we have argued
that the use of a network reporting system can simplify
the set-up of experiments using only off-the-shelf equipment.
Using the OML reporting library, a complex experiment using
various sensors could be easily set up, and the data centrally
collected . However, multiple network clients pose the problem
of time synchronisation, for the data to be meaningfully usable.

lockoffset in all all inc

. T -4
- ! -3
i oo k2
i [@ < |- [g L1
— e e -T I] - - L0
netdelay [netdelay inc| clockoffset

Synchronisation error [s]

o}
{o}
oo

-
+
+
T T

Figure 5. Errors throughout conditions

This paper proposed the use of TTP to provide practical post
hoc timestamp correction, as well as an experimental set-up to
study it. We set-up a series of experiments emulating various
severe time impairments, and proposed the use of the previ-
ously introduced TTP as a feed-forward correction method.
We showed that TTP managed to provide better results than
the worst impaired system, thus validating the feasibility of
post hoc clock correction based on OML timestamps.

In our experiment, strongly adverse conditions were simu-
lated by combining clock offset with network delays of up to
241 s RTT, but managed to reduce the errors between affected
clients to below one second, which can also correct message
ordering. This is a very encouraging result, hence future work
will focus on improving our TTP-based approach further, as
well as studying the performance of other feed-forward time
correction algorithms. Ultimately, we hope to integrate such
mechanisms directly into the reporting framework, saving the
experimenter from some post-processing before their data can
be analysed.

REFERENCES

[1] K. Romer, P. Blum and L. Meier, ‘Time synchronization and
calibration in wireless sensor networks’, in Handbook of Sensor
Networks. 23 Sep. 2005, ch. 7. Do1: 10.1002/047174414x.ch7.

[2] IBM and Eurotech, MQTT v3.1 protocol specification, 2010.

[3] V. Lampkin, W. T. Leong, L. Olivera et al., Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Tele-
metry, SG24-8054-00. 2012.

[4] O. Mehani, G. Jourjon, T. Rakotoarivelo and M. Ott, ‘An
instrumentation framework for the critical task of measurement
collection in the future Internet’, Comput. Netw., vol. 63,
22 Apr. 2014. por: 10.1016/j.bjp.2014.01.007.

[5S] R. Taib, J. Tederry and B. Itzstein, ‘Quantifying driver frustra-
tion to improve road safety’, in CHI 2014, Toronto, Ontario,
Canada, 26 Apr. 2014. DOI: 10.1145/2559206.2581258.

[6] J. Ridoux and D. Veitch, ‘Principles of robust timing over the
Internet’, ACM Queue, vol. 8, no. 4, 21 Apr. 2010. po1: 10.
1145/1755884.1773943.

[71 K. Arvind, ‘Probabilistic clock synchronization in distributed
systems’, IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 5, May
1994. por: 10.1109/71.282558.

http://dx.doi.org/10.1002/047174414x.ch7
http://dx.doi.org/10.1016/j.bjp.2014.01.007
http://dx.doi.org/10.1145/2559206.2581258
http://dx.doi.org/10.1145/1755884.1773943
http://dx.doi.org/10.1145/1755884.1773943
http://dx.doi.org/10.1109/71.282558

	Introduction
	Requirements
	Network Reporting

	Context of Use
	User Study Set-up
	Sensors
	Aggregation

	Timestamp Correction
	Principles
	Notations
	Experiment
	Time Correction

	Conclusion

