
Endpoint-transparent Multipath Transport with
Software-defined Networks

Dario Banfi∗†, Olivier Mehani∗, Guillaume Jourjon∗, Lukas Schwaighofer†, Ralph Holz‡

∗ Data61, CSIRO, Sydney, Australia; Email: {first.last}@data61.csiro.au
† Faculty of Informatics, Technical University of Munich, Germany; Email: {first.last}@tum.de
‡ School of IT, University of Sydney, NSW, Australia; Email: ralph.holz@sydney.edu.au

Abstract—Multipath forwarding consists in using multiple
paths simultaneously to transport data. While most techniques
in this area require endpoint modifications, this article proposes
to do it inside the network, transparently to the hosts. This
approach, however, is known to introduce packet reordering at the
receiving end, which may cause critical performance degradation.
We present a Software Defined Network architecture which
automatically sets up multipath forwarding including solutions
to those issues, both at the sending side, through multipath
scheduling algorithms, and the receiver side, by resequencing
out-of-order packets in a dedicated in-network buffer. A prototype
of the model is implemented with wide-spread technologies and
evaluated in both emulated and real networks. In this demo, we
will show how our solution improves Quality of Experience for
high quality video streaming while remaining reactive to network
congestion.

I. INTRODUCTION

IP networks are inherently multipath. Yet, the existence of
multiple paths between two endpoints is rarely leveraged. This
issue can be ascribed to the fact that only lower layers can get
an accurate view of the network topology, while only upper
layers are able to control the rate and end-to-end destination.

Nonetheless, solutions have been proposed at various layers
to improve specific use-cases, such as layers 2–3 for data-
centres with, e.g., BCube [1] or DCell [2], or layer 4 for
multi-homed devices with Multipath TCP (MPTCP) [3] or
Concurrent Multipath Transfer for SCTP (CMT-SCTP) [4].

The most prominently quoted motivations for multipath are
the potential for continuity of connectivity in case of path
failure or congestion (i.e., fail-over or load-balancing), or
capacity aggregation to speed up high volume transfers between
endpoints [e.g., 5, for MPTCP].

Layer-2 multipath topologies [e.g., 6], have been successfully
deployed and used within fully-controlled data-centre networks.
End-to-end multipath support throughout the public Internet is
however limited [7], due to the requirements to modify end-
hosts. Heterogeneous network paths also increase the issue
of packet reordering, creating head-of-line blocking delays
and sometimes leading to worse performance than single-path
transfers [8].

In this paper, we attempt to join both lower- and upper-layer
approaches and merge their successes through the use of SDN.
We aim to satisfy the following goals: capacity aggregation,
ease of end-to-end deployment, adaptivity to failures, and

Topology Discovery
Component

Network
Measurement
Component

Multipath Routing
Component

CONTROLLER

Manual Configuration
LLDP on L2

Push flow rules
- Output port
- Multipath 
- Reordering

RTT Probe Packets
Packet Trains
Port stats

Group-based WRR
packet scheduling

Resequencing
buffer (optional)

(optional)

Figure 1: Multipath SDN Architecture

automatic path computation. To this end, we introduce the
MPSDN architecture,1 comprising an SDN controller with
better knowledge and control of available paths than endpoint-
only layer-4 solutions, as well as modifications of the Open
vSwitch implementation and OpenFlow protocol to enable finer
packet scheduling and reordering within the network, without
need for explicit end-host support.

The solution can be deployed with either layer-2 forwarding
or layer-3 routing or tunnelling, and the controller does not
require full control of the network hops. We show that this
approach enables performance similar to MPTCP’s, while
lifting the requirement for end-host modifications. The focus
of this paper is on TCP, but we note our proposal can handle
other transport protocol in a similar fashion [9]. This work also
allows us to identify some non-trivial issues when implementing
layer-4 switching and scheduling with SDN solutions.

The remainder of this paper is organised as follows: We
present the proposed architecture and its implementation in
Section II and the demo’s requirements in Section III.

II. ARCHITECTURE

Our proposed architecture for an endpoint-transparent mul-
tipath network consists of a centralised controller with know-
ledge of the network topology which dynamically sets up

1A more detailed version of our proposal is going to be presented in the
regular track of LCN



loop-less forwarding rules on SDN switches under its control
(Figure 1). For the presented proof-of-concept, we focus on
two path scenarios only.

The controller has some knowledge of the network state and
views the underlying infrastructure as a directed graph, where
costs between switches are given by the latency and capacity
of the paths. With this knowledge it computes the optimal
multipath forwarding table to send data from one node to the
other, maximizing the capacity usage with an algorithm based
on the maximum-flow problem. This is similar to AMR [10],
but we extend it to layer-3 infrastructures. In case of failure
or heavy congestion, the controller will compute an updated
forwarding table and push it to the SDN switches.

In the remainder of this section, we present the key concepts
of our architecture: the topology discovery and path selection,
as well as the packet scheduler and reordering buffer. We also
describe how we implemented this architecture in the Ryu
OpenFlow controller2 and modified Open vSwitch to support
packet reordering on edge switches.

A. Topology Discovery

In order to discover the network topology, we both query
the forwarding devices using Link Layer Discovery Protocol
(LLDP) when available (i.e., layer 2), or deploy ad hoc mechan-
isms to estimate end-to-end latency and throughput (i.e., layer
3). In particular, we estimate path latency with a slightly mod-
ified Bouet’s algorithm [11], which yields high accuracy and
has a low network footprint. Unlike NetFlow or measurements
using ICMP echo requests, it does not require additional servers
or components. The algorithm is run using controller-to-switch
messages only. In addition, we use port statistics counters for
bandwidth estimation.

B. Path Selection

In order to maximise the aggregated capacity of the multiple
paths, the controller uses an algorithm similar to the Edmonds-
Karp algorithm to solve the maximum flow problem, with a
Breadth First Search to find the augmenting paths. It uses the
Dijkstra algorithm with min-priority queue to find the shortest
paths from source to destination.

To select compatible paths, we introduce the concept of
maximum delay imbalance,

MDI =
dmax

dmax + dmin
− 0.5 , (1)

where dmin and dmax denote the minimal and maximal delays
from the candidate paths. Its range is [0, 0.5] where 0 represents
completely balanced paths and 0.5 is the limit of imbalance.

This metric is used for different purposes by our solution.
If the computed MDI among the selected paths is higher
than a reordering threshold, a flow reordering rule is set up
at the receiving edge router. Similarly, if the MDI is above
another threshold, the delay difference is considered too high
to provide any aggregated capacity advantage.

2https://osrg.github.io/ryu/

C. Packet Scheduler

To maximise the performance, a multipath scheduler should
push the right amount of data over different paths, without
overloading already congested ones and ensuring full utilisation
of the available capacity. MPTCP uses subflows with independ-
ent congestion windows [3], [5] and can buffer some packets
before sending them on the desired path [12], [13].

In the case of in-network multipath, however, neither the
per-path window information nor the advance buffering option
are readily available. To maximise application throughput, we
use a Weighted Round-Robin (WRR) scheduler which sends
bursts of packets along the paths weighted according to their
capacity as wj = cj/

∑n
i ci, where wj is the weight associated

with path j, and cj its estimated capacity.

D. Reordering Mechanism

We propose to introduce a resequencing buffer at the receiv-
ing edge switch in order to address this problem in a similar
fashion, albeit without receiver node’s involvement. The buffer
temporarily stores packets received ahead of time. It does so
by maintaining a record of the next expected sequence number
for each flow, in a similar fashion as TCP, and only forwards
packets if sequence numbers match.

This can cause a problem in case packets are lost prior to
reaching the resequencing buffer. To avoid timeouts at the
TCP sender, our proposed solution implements dynamic buffer
sizes based on a buffering threshold, sized as a function of
the MDI and the bandwidths of the selected paths for the
flow. If the number of packets buffered for a flow exceeds its
threshold, the buffer releases them in order of their sequence
number, ignoring gaps. This may trigger some unnecessary
retransmissions, but endpoints supporting SACK should only
see minimal impact.

E. Implementation Considerations

We implemented the WRR scheduler using the existing
Select group in Open vSwitch. The resequencing buffer required
the addition of a new group in Open vSwitch, as well as a
new OpenFlow message to configure it. The code for these
modifications is available online3 as well as that of our Ryu-
based controller.4

While layer-2 path capacity was estimated using port statist-
ics, a dynamic layer-3 equivalent was not fully implemented—
the controller currently needs manual configuration about path
capacities. We expect the switches could use client traffic to
implement methods such as packet dispersion [14]. Such an
approach is, however, beyond the scope of this paper.

III. DEMONSTRATION

As detailed above, we have implemented our solution in
both Open vSwitch for the various mechanisms and in RYU
SDN controller for the control part. In order to demonstrate the
benefit of our proposal, we offer a walk-through scenario in

3https://github.com/dariobanfi/ovs-multipath
4https://github.com/dariobanfi/multipath-sdn-controller



Switch A

Switch ESwitch F

Switch CSwitch B

Switch D
Client

WWW

Video Server

Cross-Traffic
Generator

Cross-Traffic
Generator

SDN Controller

Network Characteristics:
A-B-C-D: 25ms, 7Mbps
A-F-E-D: 25ms, 7Mbps

Figure 2: Demonstration Topology

which a high quality video would be streamed in an emulated
network and our solution would automatically re-configure the
various switches.5

1) Scenario: In our demonstration, a server streams HD
video (10 Mb/s) over HTTP over a simple multipath topology
composed of six switches (two paths) and a client as shown in
Figure 2. In this topology, the nominal capacity of each path
is set to 7 Mb/s, with a similar one-way latency of 25 ms.

At the beginning of the demo, the network is left un-
configured where the video stream would follow a single
path, resulting in video stalling and poor performances. After,
this first phase, the SDN controller would reconfigure edge
switches (A and D in Figure 2) to provide Multipath-SDN. Once
configured, we will demonstrate how our solution leverages
this addition network capacity to provide good Quality of
Experience to the end-user.

Finally, in order to demonstrate the ease of reconfiguration
of our solution, UDP cross traffic is generated in a last phase
resulting in a congestion on one of the path (between F and E
in Figure 2). Upon observation of this congestion event, the
SDN controller is automatically re-configuring the network to
use single path.

2) Implementation Details and Equipment: To emulate the
network topology shown in Figure 2 we would use a single
laptop running virtualization software deploying our modified
open vSwitch application. The server and client will also run
in separate virtual machines.

The exact demonstration requirements in terms of equipment
are provided in the list below:

5A recorded video of our demo can be found at https://www.youtube.com/
watch?v=hkgf7l9Lshw

• Table large enough for 1 laptop and monitor;
• HDMI Monitor/Screen (optional);
• Power supply for 1 laptop, and 1 screen;
• Ethernet cable with Internet access;
• Poster wall;

REFERENCES

[1] C. Guo, G. Lu, D. Li et al., “BCube: A high performance,
server-centric network architecture for modular data
centers”, Comput. Commun. Rev., vol. 39, no. 4, 2009.

[2] Q. Zhang, L. Cheng and R. Boutaba, “Cloud computing:
State-of-the-art and research challenges”, J. Internet.
Serv. Appl., vol. 1, no. 1, 2010.

[3] A. Ford, C. Raiciu, M. Handley et al., “TCP extensions
for multipath operation with multiple addresses”, RFC
6824, 2013.

[4] Y. Yuan, Z. Zhang, J. Li et al., “Extension of SCTP for
concurrent multi-path transfer with parallel subflows”,
in WCNC 2010.

[5] A. Ford, C. Raiciu, M. Handley et al., “Architectural
guidelines for multipath TCP development”, RFC 6182,
2011.

[6] M. Al-Fares, A. Loukissas and A. Vahdat, “A scalable,
commodity data center network architecture”, Comput.
Commun. Rev., vol. 38, no. 4, 2008.

[7] O. Mehani, R. Holz, S. Ferlin et al., “An early look at
multipath TCP deployment in the wild”, in HotPlanet
2015.

[8] G. Sarwar, R. Boreli, E. Lochin et al., “Performance
evaluation of multipath transport protocol in asymmetric
heterogeneous network environment”, in ISCIT 2012.

[9] D. Banfi, “Endpoint-transparent multipath in software
defined networks”, Master’s thesis, 2016. [Online]. Avail-
able: https://www.nicta.com.au/pub?id=9163.

[10] T. N. Subedi, K. K. Nguyen and M. Cheriet, “OpenFlow-
based in-network layer-2 adaptive multipath aggregation
in data centers”, Comput. Commun., vol. 61, 2015.

[11] M. Bouet, “Monitoring latency with OpenFlow”, in
CNSM 2013.

[12] F. Yang, Q. Wang and P. Amer, “Out-of-order transmis-
sion for in-order arrival scheduling policy for multipath
TCP”, in PAMS 2014.

[13] S. Ferlin, O. Alay, O. Mehani et al., “Blest: Blocking
estimation-based MPTCP scheduler for heterogeneous
networks”, in IFIP Networking 2016.

[14] C. Dovrolis, P. Ramanathan and D. Moore, “Packet-
dispersion techniques and a capacity-estimation meth-
odology”, IEEE/ACM Transactions on Networking, vol.
12, no. 6, 2004.


